Théorie de la mesure
Apparence
Théorie de la mesure
Chapitres
Chap. 1 : | ![]() |
---|---|
Chap. 2 : | ![]() |
Chap. 3 : | ![]() |
Exercices
Exos. 1 : | ![]() |
---|---|
Exos. 2 : | ![]() |
Exos. 3 : | ![]() |
Devoirs
Devoir : | ![]() |
---|
Interwikis
Présentation [ ]
La théorie de Bernhard Riemann, précédant chronologiquement celle de Henri Lebesgue, est souvent insuffisante pour étudier le passage à la limite dans les intégrales. Vers 1900, Lebesgue a proposé sa théorie de l'intégration qui inclut les théorèmes permettant de résoudre cette difficulté.
La théorie de la mesure est l'outil primordial pour comprendre la théorie de l'intégration de Lebesgue et la théorie des probabilités.
Objectifs [ ]
- donner les résultats principaux de la théorie de l'intégrale de Lebesgue,
- sans entrer dans tous les détails de certaines démonstrations qui sont délicates.
L'intégrale de Lebesgue permet aussi d’aborder des notions plus évoluées de probabilité et joue un rôle dans la théorie des distributions.
Niveau et prérequis conseillés [ ]
Leçon de niveau 16.
- Introduction aux suites numériques
Intégrale de Riemann
Notions sur les applications : injections, surjections, bijections, images directes, réciproques.
- Rudiments sur la cardinalité et la dénombrabilité.
Applications linéaires.
- Espaces topologiques, métriques.
- Limites, continuité, densité
Référents [ ]
Ces personnes sont prêtes à vous aider concernant cette leçon :