Leçons de niveau 15

Mathématiques en MP/Exercices/Intégrales dépendant d'un paramètre

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Intégrales dépendant d'un paramètre
Image logo représentative de la faculté
Exercices no2
Cours : Mathématiques en MP

Ces exercices sont de niveau 15.

Exo préc. :Feuille d'exercices 1
Exo suiv. :Sommaire
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Intégrales dépendant d'un paramètre
Mathématiques en MP/Exercices/Intégrales dépendant d'un paramètre
 », n'a pu être restituée correctement ci-dessus.



Rappels de cours[modifier | modifier le wikicode]

Wikipédia possède un article à propos de « Intégrale paramétrique ».

Dans les trois théorèmes suivants, toutes les fonctions seront supposées (outre les hypothèses spécifiques à chacun) continues par morceaux, pour éviter de faire appel à la notion de mesurabilité, plus générale mais peu utile dans les cas concrets. désignera un intervalle réel et une application définie sur et à valeurs dans ou ( peut être infini). On définit

(pour les pour lesquels cette intégrale converge).

Début d’un théorème


Fin du théorème
Début d’un théorème


Fin du théorème
Début d’un théorème


Fin du théorème


Exercice 2-1[modifier | modifier le wikicode]

On considère , pour .

  1. Montrer que est continue (sur ) et que est bien définie sur .
  2. Pour tout , calculer .
  3. Pour tout , calculer .
  4. L'intégrale est-elle convergente ?

Exercice 2-2[modifier | modifier le wikicode]

On pose pour tout et pour tout .

  1. À l'aide du théorème de dérivation pour les intégrales à paramètre, montrer que est de classe C sur et donner une relation entre la suite et la suite des dérivées successives de au point .
  2. Calculer directement à partir de sa définition, et en déduire l'expression de ses dérivées.
  3. En déduire .

Exercice 2-3[modifier | modifier le wikicode]

On sait bien que l'intégrale de Dirichlet converge, mais non absolument.

Le but de cet exercice est de retrouver sa valeur en appliquant le théorème de dérivation d'une intégrale à paramètre à la fonction

.
  1. Montrer que est de classe C1 sur et calculer , , puis .
  2. Montrer que . Pour cela, on montrera que pour tout  :
    •  ;
    • .
  3. Conclure.

Exercice 2-4[modifier | modifier le wikicode]

On considère la fonction Gamma d'Euler, définie par

.

On sait déjà (cf. devoir sur la fonction Gamma et la formule de Stirling) que :

  • son domaine de définition est  ;
  • (pour ) ;
  • (pour ).
  1. Montrer que est de classe C et donner l'expression de pour tout .
  2. Montrer que et en déduire que s'annule au plus une fois.
  3. Montrer que s'annule entre 1 et 2.
  4. Déterminer , , , et donner l'allure du graphe de .
  5. Calculer , connaissant la valeur de l'intégrale de Gauss ().

Exercice 2-5[modifier | modifier le wikicode]

Wikipédia possède un article à propos de « Fonction bêta ».

On définit la fonction bêta par : .

  1. Montrer que cette intégrale converge si et seulement si les deux réels et sont strictement positifs.
  2. Montrer que (la définition de est rappelée dans l'exercice précédent).
  3. En déduire une expression simple de si .
  4. Démontrer que .
  5. En déduire que la fonction se prolonge en une fonction holomorphe sur , dont les seuls zéros sont les entiers négatifs ou nuls.

Exercice 2-6[modifier | modifier le wikicode]

On pose puis .

  1. Montrer que l'application est définie et continue sur .
  2. Montrer qu'elle est de classe C1 sur .
  3. Calculer .
  4. À l'aide du changement de variable , montrer que .
  5. En déduire une expression de .