Aller au contenu

Modélisation des Réseaux (M1 SIREN, 2020)/Activité E

Une page de Wikiversité, la communauté pédagogique libre.

Bonjour !


Considérez le graphe du diapo 25 de l'ensemble 3 :

  • Parmi les lettres [a, b, c, d, e, f, g, h][1], prenez la première et la dernière qu'apparaissent dans votre nom complet. On va las appeler L1 et L2.
    • Par exemple, dans mon nom je trouve "a" (dans Alexandre) pour L1 et "d" (dans Abdo) pour L2.
  • Enlevez l'un des liens sortants du nœud L1.
  • Rajoutez un lien depuis un nœud autre que L1 vers le nœud L2.


I. Identifiez les composantes fortement connexes.


II. Construisez la matrice pour le calcul de la centralité de vecteur propre par multiplication matricielle, comme proposé dans les diapos.


II. Calculez deux itérations de PageRank avec  :

  • Initialisez la matière pour le calcul de la centralité de vecteur propre, en la partageant également entre tous les nœuds.
  • Pour deux fois :
    • Faites une itération pour tous les nœuds de l'algorithme pour e calcul de la centralité de vecteur propre (de façon manuelle ou matricielle).
    • Multipliez la matière dans chaque nœud par , puis partagez également de la matière totale entre tous les nœuds.
    • Vérifiez que la matière totale reste constante[2].


Question pour les curieux : Il est aussi possible de représenter l'étape redistributive ("revenu universel") sous la forme d'une matrice qui multiplie le vecteur de matière. Quelle serait cette matrice ?


Bon travail !

  1. Dans une version précédente j'avais oublié la lettre "e" de cette liste. J'accepterai alors vos activités faites avec ou sans prendre la lettre "e" en compte !
  2. Si en enlevant le lien sortant du nœud L1 vous vous retrouvez avec un nœud sans lien sortant, la matière dans ce nœud n'aura pas de destination et par conséquence la matière totale ne sera pas constante. Pour une façon de régler cela, voyez la section « Matière non constante » de la page de discussion.

.~´