Leçons de niveau 13

Intégration en mathématiques/Exercices/Suites d'intégrales 1

Une page de Wikiversité.
Aller à : navigation, rechercher
Suites d'intégrales 1
Image logo représentative de la faculté
Exercices no17
Leçon : Intégration en mathématiques
Chapitre du cours : Intégrale et primitives

Ces exercices sont de niveau 13.

Exo préc. : Calculs indirects
Exo suiv. : Suites d'intégrales 2
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Suites d'intégrales 1
Intégration en mathématiques/Exercices/Suites d'intégrales 1
 », n'a pu être restituée correctement ci-dessus.




Exercice 17-1[modifier | modifier le wikicode]

On pose :

.

 Démontrer que :

.

 Démontrer que :

.

 En déduire que :

.

Exercice 17-2[modifier | modifier le wikicode]

Pour tout entier naturel , on pose :

.

 Prouver qu'il existe des réels et tels que, pour tout de  :

.
En déduire le calcul de .

 Démontrer que :

.
En déduire .

Exercice 17-3[modifier | modifier le wikicode]

Soit la fonction numérique de la variable réelle définie par :

.

 Trouver deux entiers relatifs et tels que :

.
En déduire, pour appartenant à , la valeur de :
.

 On considère la suite définie, pour entier naturel non nul, par :

.
Cette suite admet-elle une limite quand tend vers  ?

Exercice 17-4[modifier | modifier le wikicode]

Pour , soit :

 ;
.

 Démontrer que, pour tout entier supérieur à , on a :

 ;
.

 Calculer , , et .

 Peut-on, lorsque est impair, calculer et à l'aide d'un changement de variable simple ?

Exercice 17-5[modifier | modifier le wikicode]

On considère la fonction définie, pour réel positif, par :

,

désigne la fonction partie entière.

 Dans le plan rapporté à un repère orthonormal, construire le graphique de pour élément de .

 Soit un entier naturel. Donner l'expression de pour élément de , puis calculer .

En déduire que est une suite arithmétique, dont on donnera la raison et le premier terme.

 Pour , calculer .

Exercice 17-6[modifier | modifier le wikicode]

Soit :

.

 Justifier l'existence de . Calculer et .

 Établir une relation de récurrence entre et . En déduire l'expression de en fonction de .

 On pose :

.
Démontrer que est une valeur approchée par défaut de , avec :
.