Leçons de niveau 14

Théorie des groupes/Produit de groupes

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Début de la boite de navigation du chapitre
Produit de groupes
Icône de la faculté
Chapitre no 9
Leçon : Théorie des groupes
Chap. préc. :Action de groupe
Chap. suiv. :Théorèmes de Sylow

Exercices :

Produit de groupes
fin de la boite de navigation du chapitre
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Théorie des groupes : Produit de groupes
Théorie des groupes/Produit de groupes
 », n'a pu être restituée correctement ci-dessus.

Sauf mention contraire, les lois de groupe seront notées multiplicativement. Quand il sera question de plusieurs groupes, il nous arrivera de désigner leurs éléments neutres par le même symbole 1, ce qui, en pratique, ne prête pas à confusion.

Produit direct de deux groupes[modifier | modifier le wikicode]

Soient et deux groupes. Désignons par leur produit cartésien (ou, plus exactement, le produit cartésien de leurs ensembles sous-jacents). Il est naturel de définir sur une loi de composition composante par composante :

,

le produit apparaissant dans le second membre étant calculé dans et le produit dans . On vérifie facilement que cette loi de composition munit d'une structure de groupe. Ce groupe est appelé produit direct (ou simplement produit) des groupes et et noté . Si et désignent respectivement les éléments neutres de et de , l'élément neutre de est . Le symétrique d'un élément de est l'élément .

L'application définit un isomorphisme de sur (« commutativité » du produit direct) et l’application définit un isomorphisme de sur (« associativité » du produit direct).

Produit direct d'une famille de groupes[modifier | modifier le wikicode]

La définition qui précède se généralise comme suit à une famille quelconque de groupes.




Il est clair que cette loi de composition est bien une loi de groupe.

Remarque. Les notations ne sont pas tout à fait fixées. L'emploi ci-dessus du symbole est conforme à Bourbaki[1], à J.J. Rotman[2], à D.S. Dummit et R.M. Foote[3] etc. Kurzweil et Stellmacher[4] notent ou encore ou encore le produit direct d'une famille finie de groupes. Ils n'emploient le symbole que pour désigner des opérations internes à un groupe[5]. W.R. Scott, Group Theory, 1964, réimpr. Dover, 1987, pp. 14-15 (exemples 11 et 12), désigne par le produit direct d'une famille de groupes.

Somme restreinte d'une famille de groupes[modifier | modifier le wikicode]

Dans le produit direct , considérons les éléments possédant la propriété suivante : l’ensemble des éléments i de I tels que (où 1 désigne le neutre de ) est fini. Ces éléments, appelés familles de support fini, forment un sous-groupe de .




Si l’ensemble I est fini, la somme restreinte et le produit coïncident. Dans la suite de ce chapitre, nous ne nous intéresserons plus au produit, mais seulement à la somme restreinte d'une famille de groupes.

Soient une famille de groupes et S sa somme restreinte. Pour chaque élément i de I, désignons par l’application de dans S qui à l'élément x de fait correspondre la famille dont la i-ème valeur est x et les autres valeurs 1. Nous définissons ainsi un homomorphisme injectif de dans S. Cet homomorphisme est appelé i-ème inclusion canonique de dans S. L'image de par est isomorphe à et on l'identifie souvent à , disant par exemple que est un sous-groupe de S. Pour la clarté de ce premier exposé, nous éviterons cet abus de langage.

On vérifie facilement que les sous-groupes de S sont distingués et qu’ils ont deux à deux des intersections réduites à l'élément neutre de S.

Soient i et j deux éléments distincts de I. Tout élément de commute avec tout élément de . En effet, les produits et sont tous deux égaux à la famille dont la i-ème composante est x, la j-ème composante y et dont les autres composantes sont égales à 1. (L'hypothèse est essentielle dans le cas où les ne sont pas supposés commutatifs.)

De façon générale, si G est un groupe, si est une famille finie d'éléments de G qui commutent deux à deux, on peut définir le produit de cette famille d'éléments de G sans se préoccuper d'un ordre dans l’ensemble J, car, vu la commutativité, le produit est indépendant de l’ordre choisi. Il est clair qu'on peut de même définir le produit d'une famille même infinie d'éléments de G qui commutent deux à deux si l’ensemble des i tels que est fini. Avec cette définition, tout élément de S est le produit de la famille d'éléments de S. En particulier, les engendrent S.

Début d’un théorème


Fin du théorème
Début d'une démonstration


Fin de la démonstration

Les remarques faites plus haut sur la structure de la somme restreinte externe nous suggèrent la définition suivante :




Il revient au même de dire que pour tous éléments distincts i et j de I, chaque élément de commute avec chaque élément de et que tout élément de G peut s'écrire d'une et une seule façon , la famille étant une famille de support fini telle que pour tout i[7].

Début d’un théorème


Fin du théorème
Début d'une démonstration


Fin de la démonstration

Donnons encore deux autres caractérisations de la somme restreinte interne. Le lecteur pourra les démontrer à l'aide de la remarque qui précède et du fait (démontré dans Exercices/Sous-groupe distingué, groupe quotient) que si deux sous-groupes normaux ont une intersection réduite à l'élément neutre, tout élément de l'un commute avec tout élément de l'autre.

Début d’un théorème


Fin du théorème


Début d’un théorème


Fin du théorème

Cette dernière caractérisation est utile comme condition suffisante pour que G soit somme restreinte interne des Gi.

On vérifie facilement que est somme restreinte interne de la famille (où, comme plus haut, désigne la i-ième inclusion canonique de dans la somme restreinte proprement dite).

Si l’ensemble I est fini, on remplace souvent l’expression « somme restreinte interne » par « produit direct interne », ou « produit direct », ou « produit ». Plutôt que de dire qu'un groupe est produit direct d'un couple (H, K) de ses sous-groupes, on préfère dire qu’il est produit direct de H et de K, etc.

Il nous arrivera d'appeler « somme restreinte externe » la somme restreinte proprement dite, pour la distinguer de la somme restreinte interne.

Soit G un groupe, somme restreinte interne d'une famille de sous-groupes. Pour tout élément j de I, on appelle j-ème projection de G sur Gj (relativement à la famille ) l’application de G dans Gj qui, pour tout élément x de G, applique x sur l'élément xj de Gj apparaissant dans l'unique expression de x sous la forme avec pour chaque i. Il est clair que cette projection est un homomorphisme de G sur Gj. Elle est d'ailleurs égale au composé désigne l'isomorphisme canonique de G sur et l'homomorphisme de (somme restreinte externe) sur Gj.

Début d’un théorème


Fin du théorème
Début d'une démonstration


Fin de la démonstration
Début d’un théorème


Fin du théorème

La démonstration, facile, est laissée au lecteur. Une version interne de ce théorème (si un groupe G est somme directe interne d'une famille de sous-groupes, si pour tout i, désigne un sous-groupe de , alors le sous-groupe engendré par les est somme directe interne des ) s'obtient comme cas particulier du théorème suivant :

Début d’un théorème


Fin du théorème
Début d'une démonstration


Fin de la démonstration
Début d’un théorème


Fin du théorème

Démonstration laissée au lecteur.

Début de l'exemple


Fin de l'exemple




D'après la « commutativité » et l'« associativité » de la somme restreinte, il est clair que si un groupe G est somme restreinte interne d'une famille (Hi)i de sous-groupes, chaque Hi est facteur direct de G.

Début d’un théorème


Fin du théorème
Début d'une démonstration


Fin de la démonstration
Début d’un théorème


Fin du théorème
Début d'une démonstration


Fin de la démonstration
Début d’un théorème


Fin du théorème
Début d'une démonstration


Fin de la démonstration



Début d'une démonstration


Fin de la démonstration
Début d’un théorème


Fin du théorème
Début d'une démonstration


Fin de la démonstration

Voici une version interne de ce théorème :

Début d’un théorème


Fin du théorème
Début d'une démonstration


Fin de la démonstration



Début d'une démonstration


Fin de la démonstration



Début d'une démonstration


Fin de la démonstration



Début d'une démonstration


Fin de la démonstration

Remarques.

  • Le corollaire qui précède nous servira dans l'étude des groupes nilpotents finis.
  • Dans la démonstration de ce corollaire, on aurait pu éviter le raisonnement par récurrence en utilisant le fait que si G est un groupe et K1, K2, ... , Kn des sous-groupes distingués finis de G, l'ordre de K1 K2 ... Kn divise le produit des ordres des Ki. (Voir « formule du produit » au chapitre Classes modulo un sous-groupe.)
Début de l'exemple


Fin de l'exemple



Début d'une démonstration


Fin de la démonstration

Notes et références[modifier | modifier le wikicode]

  1. Algèbre, ch. 1, § 4, déf. 12, p. 43.
  2. An Introduction to the Theory of Groups, 4e édition, tirage 1999, p. 308.
  3. Abstract Algebra, Wiley, 2004, p. 157.
  4. The Theory of Finite Groups, An Introduction, Springer, 2004, p. 27.
  5. Ouvr. cité, p. 28.
  6. N. Bourbaki, Algèbre, ch. I, § 4, no 9, Paris, 1970, p. 46.
  7. N. Bourbaki, Algèbre, ch. I, § 4, nos ; Paris, 1970, pp. 43-46.
  8. N. Bourbaki, Éléments de mathématique, Algèbre, ch. I, § 4 ; Paris, 1970, p. 45.
  9. N. Bourbaki, Algèbre, I, Chapitres 1 à 3, Paris, 1970, ch. 1, § 4, no 9, prop. 15, p. 46.