Aller au contenu

Théorie des groupes/Premiers résultats sur les groupes simples

Leçons de niveau 14
Une page de Wikiversité, la communauté pédagogique libre.
Début de la boite de navigation du chapitre
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Théorie des groupes : Premiers résultats sur les groupes simples
Théorie des groupes/Premiers résultats sur les groupes simples
 », n'a pu être restituée correctement ci-dessus.

On va donner ici quelques théorèmes sur les groupes simples, qui nous permettront notamment de prouver dans les exercices que tout groupe simple non commutatif d'ordre < 168 est isomorphe à A5.

Commençons par une remarque banale :

Début d’un théorème
Fin du théorème
Début d'une démonstration
Fin de la démonstration

Utilisation des opérations d'un groupe sur certains ensembles

[modifier | modifier le wikicode]
Début d’un théorème
Fin du théorème
Début d'une démonstration
Fin de la démonstration
Début d’un théorème
Fin du théorème
Début d'une démonstration
Fin de la démonstration
Début d’un théorème
Fin du théorème
Début d'une démonstration
Fin de la démonstration
Début d’un théorème
Fin du théorème
Début d'une démonstration
Fin de la démonstration
Début d’un théorème
Fin du théorème
Début d'une démonstration
Fin de la démonstration

Remarque. La forme faible du théorème 5 (G est isomorphe à un sous-groupe transitif de An), et même une forme encore plus faible (G est isomorphe à un sous-groupe de An) suffit déjà dans bon nombre d'applications, mais la forme forte (l'opération de G par conjugaison sur l’ensemble de ses p-sous-groupes de Sylow est équivalente à l'opération naturelle d'un sous-groupe transitif de An) peut rendre des services que la forme faible ne rend pas. Supposons par exemple que les p-sous-groupes de Sylow de G aient deux à deux des intersections triviales. On a vu dans les exercices de la série Théorèmes de Sylow qu'un élément de G dont l’ordre est une puissance de p normalise un p-sous-groupe de Sylow P de G si et seulement s'il appartient à P. Cela revient à dire que dans l'opération de G par conjugaison sur l’ensemble E de ses p-sous-groupes de Sylow, un élément x de G dont l’ordre est une puissance de p fixe un élément P de E si et seulement x appartient à P. Puisque nous supposons que les p-sous-groupes de Sylow de G ont deux à deux des intersections triviales, il en résulte que dans l'opération de G par conjugaison sur l’ensemble E de ses p-sous-groupes de Sylow, un élément non neutre de G dont l’ordre est une puissance de p fixe un et un seul élément de E. Il résulte donc de la forme forte du théorème que (si les p-sous-groupes de Sylow de G ont deux à deux des intersections triviales) G est isomorphe à un sous-groupe transitif H de An possédant la propriété suivante : tout élément non neutre de H dont l’ordre est une puissance de p fixe un et un seul élément de {1, 2, ..., n}. Ce fait peut être utilisé, par exemple, dans la démonstration du théorème[1] selon lequel tout groupe simple d'ordre 360 est isomorphe à A6.

Début d’un théorème
Fin du théorème
Début d'une démonstration
Fin de la démonstration

Remarque. Ce théorème entraîne qu'un sous-groupe propre d'un groupe simple G ne peut pas être d'indice trop petit par rapport à l’ordre de G.

Début d’un théorème
Fin du théorème
Début d'une démonstration
Fin de la démonstration
Début d’un théorème
Fin du théorème
Début d'une démonstration
Fin de la démonstration

Remarque. Si n est pair, p est égal à 2 et nous retrouvons un théorème déjà démontré (même pour un groupe G infini) : tout sous-groupe d'indice 2 est distingué.

Début d'une démonstration
Fin de la démonstration

Utilisation des théorèmes de Sylow

[modifier | modifier le wikicode]

On va donner un exemple de la façon dont, en raisonnant sur les sous-groupes de Sylow (autrement qu'on ne l'a fait dans la démonstration du théorème 5), on peut prouver, pour certains nombres naturels n, qu’il n'existe pas de groupe simple d'ordre n.

Début d’un théorème
Fin du théorème


Début d'une démonstration
Fin de la démonstration

Utilisation du théorème du complément normal de Burnside

[modifier | modifier le wikicode]

Soit G un groupe fini dont l'ordre admet au moins deux facteurs premiers, soit p un facteur premier de l'ordre de G. Supposons qu'un p-sous-groupe de Sylow P de G soit central dans son normalisateur NG(P). Alors, d'après le théorème du complément normal de Burnside, P admet un complément normal dans G et G n'est donc pas simple.

Comme on l'a vu dans le chapitre théorique Transfert, théorème du complément normal de Burnside et dans les exercices correspondants, cela permet de prouver que, sous certaines conditions ne dépendant que du nombre naturel n, il n'existe pas de groupe simple d'ordre n.

Notes et références

[modifier | modifier le wikicode]
  1. Ce théorème a été démontré par F. N. Cole, « Simple groups as Far as Order 660 », American Journal of Mathematics, vol. 15, n° 4, octobe 1893, p. 303-315, spéc. 307-310, consultable sur le site JSTOR.
  2. Énoncé dans J. Calais, Éléments de théorie des groupes, Paris, 1984, p. 217, exerc. 11.