Leçons de niveau 13

Arithmétique/Divisibilité et congruences dans Z

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Début de la boite de navigation du chapitre
Divisibilité et congruences dans Z
Icône de la faculté
Chapitre no 1
Leçon : Arithmétique
Retour auSommaire
Chap. suiv. :PGCD

Exercices :

Division euclidienne
Exercices :Multiples et diviseurs
Exercices :Diviseurs communs
Exercices :Congruences
fin de la boite de navigation du chapitre
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Arithmétique : Divisibilité et congruences dans Z
Arithmétique/Divisibilité et congruences dans Z
 », n'a pu être restituée correctement ci-dessus.

Soient , et trois entiers (relatifs).

Multiples d’un entier relatif, divisibilité dans Z[modifier | modifier le wikicode]



Début de l'exemple


Fin de l'exemple









Division euclidienne[modifier | modifier le wikicode]






Début de l'exemple


Fin de l'exemple


Congruences[modifier | modifier le wikicode]

La relation de congruence ne ressemble pas aux relations habituelles, en effet les relations que nous utilisons depuis que nous faisons des mathématiques (=, <, > …) comparent deux nombres alors que la relation de congruence compare les restes des deux nombres étudiés.

Soit un entier strictement positif.




Les notations changent d’un ouvrage à l'autre mais désignent toutes la même chose :

  •  ;
  •  ;
  •  ;




Début de l'exemple


Fin de l'exemple


Propriétés des congruences[modifier | modifier le wikicode]

  • Si et , alors
  • Si et , alors :
    • (1) et plus généralement,
      •  ;
    • (2)  ;
    • (3)
Début de l'exemple


Fin de l'exemple