Aller au contenu

Fonction exponentielle/Exercices/Étude de la fonction exponentielle

Leçons de niveau 13
Une page de Wikiversité, la communauté pédagogique libre.
Étude de la fonction exponentielle
Image logo représentative de la faculté
Exercices no4
Leçon : Fonction exponentielle
Chapitre du cours : Étude de la fonction exponentielle

Exercices de niveau 13.

Exo préc. :Propriétés algébriques de l'exponentielle
Exo suiv. :Désintégration des corps radioactifs
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Étude de la fonction exponentielle
Fonction exponentielle/Exercices/Étude de la fonction exponentielle
 », n'a pu être restituée correctement ci-dessus.




Un certain nombre d'études de fonctions ne peuvent se faire sans le théorème de dérivation d'une composée par une fonction affine (niveau 11).

Exercice 1 : étude de fonction

[modifier | modifier le wikicode]

ƒ est la fonction définie sur par :

pour tout .

1. Étudier les variations de ƒ.

2. Étudier la limite de ƒ en .

3. Démontrer que la courbe représentative de ƒ admet une asymptote oblique dont on donnera une équation.

4. Étudier les positions relatives de et .

5. Déterminer une équation de la tangente à au point d'abscisse 2.


Exercice 2 : étude de fonction

[modifier | modifier le wikicode]

ƒ est la fonction définie sur par :

pour tout .

1. Étudier les variations de ƒ.

2. Étudier la limite de ƒ en .

3. Démontrer que la courbe représentative de ƒ admet une asymptote oblique dont on donnera une équation.

4. Étudier les positions relatives de et .

5. Déterminer une équation de la tangente à au point d'abscisse 2.


Exercice 3 : dérivation

[modifier | modifier le wikicode]

Calculer la fonction dérivée des fonctions suivantes.

1.

2.

3.

4.

Exercice 4 : dérivation

[modifier | modifier le wikicode]

Calculer la fonction dérivée des fonctions suivantes.

1.

2.

3.

4.

5.

6.

7.

Exercice 5 : étude de fonction

[modifier | modifier le wikicode]

Pour tout réel λ > 0, on note ƒλ la fonction définie sur par :

pour tout

1. Tracer sur calculatrice la courbe représentative de ƒλ pour λ = 0,5 et pour λ = 3.

2. Démontrer que ƒλ est paire, c'est-à-dire pour tout .

3. Étudier les variations de ƒλ et déterminer sa limite en .