Leçons de niveau 14

Signaux physiques (PCSI)/Circuits linéaires du premier ordre : stockage et dissipation d'énergie

Une page de Wikiversité.
Aller à : navigation, rechercher
Début de la boite de navigation du chapitre
Circuits linéaires du premier ordre : stockage et dissipation d'énergie
Icône de la faculté
Chapitre no 27
Leçon : Signaux physiques (PCSI)
Chap. préc. : Circuits linéaires du premier ordre : régime libre, réponse à un échelon
Chap. suiv. : Oscillateurs amortis : circuit R L C série et oscillateur mécanique amorti par frottement visqueux
fin de la boite de navigation du chapitre
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Signaux physiques (PCSI) : Circuits linéaires du premier ordre : stockage et dissipation d'énergie
Signaux physiques (PCSI)/Circuits linéaires du premier ordre : stockage et dissipation d'énergie
 », n'a pu être restituée correctement ci-dessus.

Sommaire

Puissance électrique instantanée reçue par une association série ou parallèle de dipôles[modifier | modifier le wikicode]

Rappel : puissance électrique instantanée reçue par un dipôle[modifier | modifier le wikicode]

......Considérant un dipôle en convention récepteur traversé par un courant d'intensité instantanée et aux bornes duquel la tension instantanée vaut , la «~puissance électrique instantanée qu'il reçoit~» [1] s'écrit

[2].

Puissance électrique instantanée reçue par une association série de dipôles[modifier | modifier le wikicode]

......«~La puissance électrique instantanée reçue par une association série de dipôles est égale à la somme des puissances électriques instantanées reçues individuellement par chaque dipôle~», en effet, chaque dipôle étant traversé par un courant de même intensité et la tension aux bornes de l'association série de dipôles étant la somme des tensions aux bornes de chaque dipôle c.-à-d. , la puissance électrique instantanée reçue par l'association en convention récepteur s'écrit soit finalement

C.Q.F.D. [3].

Puissance électrique instantanée reçue par une association parallèle de dipôles[modifier | modifier le wikicode]

......«~La puissance électrique instantanée reçue par une association parallèle de dipôles est égale à la somme des puissances électriques instantanées reçues individuellement par chaque dipôle~», en effet, chaque dipôle étant soumis à la même tension et l'intensité du courant traversant l'association parallèle de dipôles étant la somme des intensités des courants traversant dipôle individuellement c.-à-d. , la puissance électrique instantanée reçue par l'association en convention récepteur s'écrit soit finalement

C.Q.F.D. [3].

Puissance électrique instantanée fournie par un échelon de tension d'amplitude E délivrant un courant d'intensité i(t) [modifier | modifier le wikicode]

......«~L'échelon de tension~» d'amplitude , de f.e.m. instantanée , étant en convention générateur, la puissance électrique instantanée qu'il délivre s'écrit

[4].

Bilan de puissance d'un R C série soumis à un échelon de tension et conséquences [modifier | modifier le wikicode]

Bilan de puissance d'un R C série soumis à un échelon de tension d'amplitude E délivrant un courant d'intensité i(t) [modifier | modifier le wikicode]

......La puissance électrique instantanée fournie par «~l'échelon de tension~» d'amplitude , se retrouve en gain horaire d'énergie stockée dans le condensateur sous forme électrostatique et en puissance calorifique dissipée dans le conducteur ohmique soit

dans lequel
  • , étant la tension instantanée aux bornes du condensateur (en convention récepteur) et sa charge instantanée et
  • , étant l'intensité instantanée du courant fournie par la source et la tension instantanée aux bornes du conducteur ohmique (en convention récepteur).

Étude des discontinuités éventuelles des grandeurs du bilan de puissance d'un R C série soumis à un échelon de tension[modifier | modifier le wikicode]

......Nous avons vu dans le chapitre précédent que «~l'intensité du courant de charge du condensateur d'un R C série soumis à un échelon de tension était discontinue de 1ère espèce en t = 0~» [5], cela entraîne une discontinuité de 1ère espèce de

  • la puissance calorifique dissipée dans le conducteur ohmique en ainsi que de
  • la puissance électrique instantanée  [6] fournie par l'échelon de tension en  ;

......le bilan de puissance permet alors d'affirmer que le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique a «~une discontinuité de 1ère espèce ou une continuité en t = 0~» [7] ;

......on peut vérifier que le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique est

  • continu si le condensateur est initialement déchargé ou
  • discontinu de 1ère espèce s'il est initialement chargé

......en effet explicitant la «~dérivée temporelle~» [8], on obtient soit encore en utilisant la définition de l'intensité du courant de décharge du condensateur ; l'expression obtenue étant le produit, en , d'une grandeur continue et d'une autre discontinue de 1ère espèce , est discontinue de 1ère espèce dans la mesure où (ce qui nécessite que le condensateur soit chargé initialement) ;

......dans les deux cas, le fait que le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique soit continu ou discontinu de 1ère espèce est conforme au caractère continu de l'énergie stockée par le condensateur sous forme électrostatique.

Déduire du bilan de puissance d'un R C série soumis à un échelon de tension l'équation différentielle en tension de charge du condensateur, puis en son intensité de courant de charge[modifier | modifier le wikicode]

Déduire du bilan de puissance d'un R C série soumis à un échelon de tension d'amplitude E l'équation différentielle en tension de charge uC(t) du condensateur[modifier | modifier le wikicode]

......Il suffit d'expliciter le calcul de la dérivée temporelle de l'énergie stockée par le condensateur sous forme électrostatique en fonction de sa tension de charge soit [9] ;

......son report dans le bilan de puissance ainsi que celui de la puissance électrique instantanée fournie par l'échelon de tension et de la puissance calorifique dissipée dans le conducteur ohmique, toutes deux exprimées en fonction de l'intensité, conduit à ou, après simplification par [10] et remplacement de l'expression de restante par , on obtient soit en normalisant

ou .

Déduire du bilan de puissance d'un R C série soumis à un échelon de tension d'amplitude E l'équation différentielle en intensité du courant de charge i(t) du condensateur[modifier | modifier le wikicode]

......Ayant déterminé l'équation différentielle en tension de charge du condensateur, il suffit de dériver une nouvelle fois par rapport à et multiplier par dans le but d'utiliser d'où l'équation différentielle cherchée

ou .

Bilan d'énergie d'un R C série soumis à un échelon de tension, dissipation d'énergie dans le conducteur ohmique[modifier | modifier le wikicode]

......Multipliant le «~bilan de puissance exprimé à l'instant t~» par , on obtient le bilan d'énergie sur l'intervalle soit

......c.-à-d. «~le travail électrique élémentaire fourni par la source~» se retrouvant en «~gain d'énergie stockée dans le condensateur sous forme électrostatique~» et en «~énergie calorifique élémentaire dissipée dans le conducteur ohmique~» [11] ou, en explicitant les différents termes

 ;

......écrivons maintenant le bilan d'énergie pour la durée totale de la charge du condensateur c.-à-d. sur l'intervalle théorique on obtient

...... est le travail électrique fourni par la source pendant la durée de la charge soit [12],
...... [13] le gain d'énergie stockée dans le condensateur sous forme électrostatique soit encore et
...... la chaleur dissipée dans le conducteur ohmique soit encore [12] ;

......explicitons le travail électrique fourni par la source pendant la durée complète de la charge en remarquant que on trouve [13] soit, avec , l'expression finale du travail électrique fourni par la source pendant la durée complète de la charge

 ;

......du bilan d'énergie pendant la durée complète de la charge du condensateur, on en déduit la chaleur dissipée dans le conducteur ohmique soit finalement

 [14].

......Remarque : le but étant de charger le condensateur, nous pouvons définir le rendement de cette charge comme le rapport de l'énergie stockée par le condensateur sous forme électrostatique sur l'énergie fournie par la source, nous trouvons alors , l'énergie dissipée sous forme calorifique dans le conducteur ohmique représentant donc .

Bilan de puissance d'un R L série soumis à un échelon de tension et conséquences [modifier | modifier le wikicode]

Bilan de puissance d'un R L série soumis à un échelon de tension d'amplitude E délivrant un courant d'intensité i(t) [modifier | modifier le wikicode]

......La puissance électrique instantanée fournie par «~l'échelon de tension~» d'amplitude , se retrouve en gain horaire d'énergie stockée dans la bobine sous forme électromagnétique et en puissance calorifique dissipée dans le conducteur ohmique soit

dans lequel
  • , étant l'intensité instantanée du courant traversant la bobine (en convention récepteur) et
  • , étant aussi l'intensité instantanée du courant fournie par la source et la tension instantanée aux bornes du conducteur ohmique (en convention récepteur).

Étude des discontinuités éventuelles des grandeurs du bilan de puissance d'un R L série soumis à un échelon de tension[modifier | modifier le wikicode]

......Nous avons vu dans le chapitre précédent que «~l'intensité du courant traversant la bobine d'un R L série soumis à un échelon de tension était continue en t = 0~», cela entraîne, dans la mesure où la bobine n'est traversée par aucun courant initialement [15], une continuité, en t = 0, de

  • la puissance calorifique dissipée dans le conducteur ohmique ainsi que de
  • la puissance électrique instantanée  [16] fournie par l'échelon de tension ;

......le bilan de puissance permet alors d'affirmer que le gain horaire d'énergie stockée dans la bobine sous forme électromagnétique est «~continue en t = 0~».

......Remarque : si la bobine était initialement [15] traversée par un courant d'intensité non nulle, «~l'intensité du courant traversant la bobine d'un R L série soumis à un échelon de tension étant continue en t = 0~», cela entraînerait,
......Remarque : une continuité de la puissance calorifique dissipée dans le conducteur ohmique en mais
......Remarque : une discontinuité de 1ère espèce en ce même instant de la puissance électrique instantanée  [17] fournie par l'échelon de tension ;

......Remarque : le bilan de puissance permettrait alors d'affirmer que le gain horaire d'énergie stockée dans la bobine sous forme électromagnétique a «~une discontinuité de 1ère espèce en t = 0~» [18].

......on peut vérifier que le gain horaire d'énergie stockée dans la bobine sous forme électromagnétique est

  • continu si la bobine n'est initialement traversée par aucun courant (ce qui est le cas usuel) ou
  • discontinu de 1ère espèce si elle est initialement traversée par un courant

......en effet explicitant la «~dérivée temporelle~» [8], on obtient soit encore en utilisant la définition de la tension aux bornes de la bobine parfaite ; l'expression obtenue étant le produit, en , d'une grandeur continue et d'une autre discontinue de 1ère espèce , est discontinue de 1ère espèce dans la mesure où (ce qui nécessite que la bobine soit initialement traversée par un courant) ;

......dans les deux cas, le fait que le gain horaire d'énergie stockée dans la bobine sous forme électromagnétique soit continu ou discontinu de 1ère espèce est conforme au caractère continu de l'énergie stockée par la bobine sous forme électromagnétique.

Déduire du bilan de puissance d'un R L série soumis à un échelon de tension l'équation différentielle en intensité de courant traversant la bobine, puis en la tension entre ses bornes[modifier | modifier le wikicode]

Déduire du bilan de puissance d'un R L série soumis à un échelon de tension d'amplitude E l'équation différentielle en intensité de courant i(t) traversant la bobine[modifier | modifier le wikicode]

......Il suffit d'expliciter le calcul de la dérivée temporelle de l'énergie stockée par la bobine sous forme électromagnétique en fonction de l'intensité du courant la traversant soit  ;

......son report dans le bilan de puissance ainsi que celui de la puissance électrique instantanée fournie par l'échelon de tension et de la puissance calorifique dissipée dans le conducteur ohmique, toutes deux exprimées en fonction de l'intensité, conduit à ou, après simplification par [19], on obtient soit en normalisant

ou .

Déduire du bilan de puissance d'un R L série soumis à un échelon de tension d'amplitude E l'équation différentielle en tension uL(t) aux bornes de la bobine parfaite[modifier | modifier le wikicode]

......Ayant déterminé l'équation différentielle en intensité de courant traversant la bobine, il suffit de dériver une nouvelle fois par rapport à et multiplier par dans le but d'utiliser d'où l'équation différentielle cherchée

ou .

Bilan d'énergie d'un R L série soumis à un échelon de tension, dissipation d'énergie dans le conducteur ohmique[modifier | modifier le wikicode]

......Multipliant le «~bilan de puissance exprimé à l'instant t~» par , on obtient le bilan d'énergie sur l'intervalle soit

......c.-à-d. «~le travail électrique élémentaire fourni par la source~» se retrouvant en «~gain d'énergie stockée dans la bobine sous forme électromagnétique~» et en «~énergie calorifique élémentaire dissipée dans le conducteur ohmique~» [11] ou, en explicitant les différents termes

 ;

......si nous écrivions maintenant le bilan d'énergie pour la durée totale de l'établissement du courant dans la bobine c.-à-d. sur l'intervalle théorique nous obtiendrions

...... serait le travail électrique fourni par la source pendant la durée de l'établissement du courant qui s'écrirait encore dans la mesure où cette grandeur serait «~convergente~» [20] [12],
...... [13] est le gain d'énergie stockée dans la bobine sous forme électromagnétique soit encore et
...... serait la chaleur dissipée dans le conducteur ohmique qui s'écrirait encore dans la mesure où cette grandeur serait «~convergente~» [21] [12]
...... mais les deux grandeurs et seraient infinies [22] car, si on considère un instant à partir duquel on peut estimer que le courant est «~quasiment~» [23] établi,
..................où mais la 1ère intégrale étant la limite, quand , de serait «~divergente~» [24] à cause du dernier terme et
..................où mais la 2ème intégrale étant la limite, quand , de serait aussi «~divergente~» [24] à cause du dernier terme

......Nous allons écrire le bilan d'énergie sur un intervalle est l'instant au-delà duquel la réponse forcée est établie à moins de près, en choisissant par exemple sachant que  [25] d'où

...... est le travail électrique fourni par la source pendant la durée de l'établissement du courant à près, s'évaluant selon ,

...... [13] le gain d'énergie stockée dans la bobine sous forme électromagnétique à moins de près, soit encore et

...... la chaleur dissipée dans le conducteur ohmique pendant la durée de s'évaluant selon  ;

......à partir de l'expression de l'intensité du courant traversant la bobine explicitée en fonction du temps on peut évaluer

  • le travail électrique fourni par la source pendant la durée de selon [26] ou encore, avec et [13],
 [27] ;

......on déduit alors, du bilan d'énergie , la chaleur dissipée dans le conducteur ohmique pendant la même durée soit

[28] ;
  • la chaleur dissipée dans le conducteur ohmique pendant la même durée de par calcul direct soit que l'on intègre selon [29] ou encore, avec et [13],
    [30].

......Remarque : le but étant d'établir un courant dans la bobine à un pourcentage près nous choisirons à près [25], nous pouvons définir le rendement de cet établissement comme le rapport de l'énergie stockée dans la bobine sous forme électromagnétique pendant la durée sur l'énergie fournie par la source pendant la même durée, nous trouvons alors , l'énergie dissipée sous forme calorifique dans le conducteur ohmique pendant la durée représentant donc approximativement .

Puissance électrique instantanée fournie par un échelon de courant d'amplitude I0 imposant une tension u(t) [modifier | modifier le wikicode]

......«~L'échelon de courant~» d'amplitude , de c.e.m. instantané , étant en convention générateur, la puissance électrique instantanée qu'il délivre s'écrit

[31].

Bilan dual du bilan de puissance d'un R C ou R L série soumis à un échelon de tension[modifier | modifier le wikicode]

association série association parallèle
circuit série soumis à un «~échelon de tension~» d'amplitude [32] circuit parallèle [33] soumis à un «~échelon de courant~» d'amplitude [34]
énergie électrostatique stockée dans un condensateur parfait de capacité soumis à une tension  : énergie électromagnétique stockée dans une bobine parfaite d'inductance propre traversée par un courant d'intensité  :
puissance calorifique dissipée dans un conducteur ohmique de résistance traversé par un courant d'intensité  : puissance calorifique dissipée dans un conducteur ohmique de conductance soumis à une tension  :
puissance instantanée électrique fournie par un échelon de tension d'amplitude délivrant un courant d'intensité  : puissance instantanée électrique fournie par une échelon de courant d'amplitude imposant une tension  :
circuit série soumis à un «~échelon de tension~» d'amplitude [32] circuit parallèle [33] soumis à un «~échelon de courant~» d'amplitude [34]
énergie électromagnétique stockée dans une bobine parfaite d'inductance propre traversée par un courant d'intensité  : énergie électrostatique stockée dans un condensateur parfait de capacité soumis à une tension  :

Dual du bilan de puissance d'un R L série soumis à un échelon de tension : bilan de puissance d'un R' C parallèle soumis à un échelon de courant[modifier | modifier le wikicode]

......Bilan de puissance d'un R L série soumis à un échelon de tension : La puissance électrique instantanée fournie par «~l'échelon de tension~» d'amplitude , se retrouve en gain horaire d'énergie stockée dans la bobine sous forme électromagnétique et en puissance calorifique dissipée dans le conducteur ohmique soit

dans lequel
  • , étant l'intensité instantanée du courant traversant la bobine (en convention récepteur) et
  • , étant aussi l'intensité instantanée du courant fournie par la source et la tension instantanée aux bornes du conducteur ohmique (en convention récepteur).

......Bilan de puissance d'un R' C parallèle soumis à un échelon de courant (par dualité) : La puissance électrique instantanée fournie par «~l'échelon de courant~» d'amplitude , se retrouve en gain horaire d'énergie stockée dans le condensateur sous forme électrostatique et en puissance calorifique dissipée dans le conducteur ohmique soit

dans lequel
  • , étant la tension instantanée aux bornes du condensateur (en convention récepteur) et
  • , étant aussi la tension instantanée aux bornes du conducteur ohmique et l'intensité instantanée du courant traversant ce dernier (en convention récepteur).

Dual du bilan de puissance d'un R C série soumis à un échelon de tension : bilan de puissance d'un R L parallèle soumis à un échelon de courant[modifier | modifier le wikicode]

......Bilan de puissance d'un R C série soumis à un échelon de tension : La puissance électrique instantanée fournie par «~l'échelon de tension~» d'amplitude , se retrouve en gain horaire d'énergie stockée dans le condensateur sous forme électrostatique et en puissance calorifique dissipée dans le conducteur ohmique soit

dans lequel
  • , étant la tension instantanée aux bornes du conensateur (en convention récepteur) et
  • , étant aussi l'intensité instantanée du courant fournie par la source et la tension instantanée aux bornes du conducteur ohmique (en convention récepteur).

......Bilan de puissance d'un R' L parallèle soumis à un échelon de courant (par dualité) : La puissance électrique instantanée fournie par «~l'échelon de courant~» d'amplitude , se retrouve en gain horaire d'énergie stockée dans la bobine sous forme électromagnétique et en puissance calorifique dissipée dans le conducteur ohmique soit

dans lequel
  • , étant l'intensité instantanée du courant traversant la bobine (en convention récepteur) et
  • , étant aussi la tension instantanée aux bornes du conducteur ohmique et l'intensité instantanée du courant traversant ce dernier (en convention récepteur).

Obtention directe du bilan de puissance d'un R C parallèle soumis à un échelon de courant et conséquences [modifier | modifier le wikicode]

Bilan de puissance d'un R C parallèle soumis à un échelon de courant d'amplitude I0 imposant une tension u(t)[modifier | modifier le wikicode]

......La puissance électrique instantanée fournie par «~l'échelon de courant~» d'amplitude , se retrouve en gain horaire d'énergie stockée dans le condensateur sous forme électrostatique et en puissance calorifique dissipée dans le conducteur ohmique soit

dans lequel
  • , étant la tension instantanée aux bornes du condensateur (en convention récepteur) et
  • , étant aussi la tension instantanée aux bornes du conducteur ohmique et l'intensité instantanée du courant traversant ce dernier (en convention récepteur).

Étude des discontinuités éventuelles des grandeurs du bilan de puissance d'un R C parallèle soumis à un échelon de courant[modifier | modifier le wikicode]

......Nous avons vu dans le chapitre précédent que «~la tension aux bornes du condensateur d'un R C parallèle soumis à un échelon de courant était continue en t = 0~», cela entraîne, dans la mesure où le condensateur est initialement [15] déchargé, une continuité, en t = 0, de

  • la puissance calorifique dissipée dans le conducteur ohmique ainsi que de
  • la puissance électrique instantanée  [35] fournie par l'échelon de courant ;

......le bilan de puissance permet alors d'affirmer que le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique est «~continue en t = 0~».

......Remarque : si le condensateur était initialement [15] chargé par une tension non nulle, «~la tension aux bornes du condensateur d'un R C parallèle soumis à un échelon de courant étant continue en t = 0~», cela entraînerait,
......Remarque : une continuité de la puissance calorifique dissipée dans le conducteur ohmique en mais
......Remarque : une discontinuité de 1ère espèce en ce même instant de la puissance électrique instantanée  [36] fournie par l'échelon de courant ;

......Remarque : le bilan de puissance permettrait alors d'affirmer que le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique a «~une discontinuité de 1ère espèce en t = 0~» [18].

......on peut vérifier que le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique est

  • continu si le condensateur est initialement déchargé (ce qui est le cas usuel) ou
  • discontinu de 1ère espèce s'il est initialement chargé

......en effet explicitant la «~dérivée temporelle~» [8], on obtient soit encore en utilisant la définition de l'intensité du courant traversant le condensateur parfait ; l'expression obtenue étant le produit, en , d'une grandeur continue et d'une autre discontinue de 1ère espèce , est discontinue de 1ère espèce dans la mesure où (ce qui nécessite que le condensateur soit initialement chargé) ;

......dans les deux cas, le fait que le gain horaire d'énergie stockée dans le condensateur sous forme électrostatique soit continu ou discontinu de 1ère espèce est conforme au caractère continu de l'énergie stockée par le condensateur sous forme électrostatique.

Équation différentielle en tension aux bornes du condensateur puis en son intensité de courant de charge d'un R C parallèle soumis à un échelon de courant déduite du bilan de puissance[modifier | modifier le wikicode]

Déduire du bilan de puissance d'un R C parallèle soumis à un échelon de courant d'amplitude I0 l'équation différentielle en tension u(t) aux bornes du condensateur[modifier | modifier le wikicode]

......Il suffit d'expliciter le calcul de la dérivée temporelle de l'énergie stockée par le condensateur sous forme électrostatique en fonction de la tension à ses bornes soit  ;

......son report dans le bilan de puissance ainsi que celui de la puissance électrique instantanée fournie par l'échelon de courant et de la puissance calorifique dissipée dans le conducteur ohmique, toutes deux exprimées en fonction de la tension, conduit à ou, après simplification par [37], on obtient soit en normalisant

ou .

Déduire du bilan de puissance d'un R C parallèle soumis à un échelon de courant d'amplitude I0 l'équation différentielle en intensité iC(t) du courant de charge du condensateur[modifier | modifier le wikicode]

......Ayant déterminé l'équation différentielle en tension aux bornes du condensateur, il suffit de dériver une nouvelle fois par rapport à et multiplier par dans le but d'utiliser d'où l'équation différentielle cherchée

ou .

Obtention directe du bilan de puissance d'un R L parallèle soumis à un échelon de courant et conséquences [modifier | modifier le wikicode]

Bilan de puissance d'un R L parallèle soumis à un échelon de courant d'amplitude I0 imposant une tension u(t)[modifier | modifier le wikicode]

......La puissance électrique instantanée fournie par «~l'échelon de courant~» d'amplitude , se retrouve en gain horaire d'énergie stockée dans la bobine sous forme électromagnétique et en puissance calorifique dissipée dans le conducteur ohmique soit

dans lequel
  • , étant l'intensité instantanée du courant traversant la bobine parfaite (en convention récepteur) liée à la tension instantanée à ses bornes par et
  • , étant aussi la tension instantanée aux bornes du conducteur ohmique et l'intensité instantanée du courant traversant ce dernier (en convention récepteur).

Étude des discontinuités éventuelles des grandeurs du bilan de puissance d'un R L parallèle soumis à un échelon de courant[modifier | modifier le wikicode]

......Nous avons vu dans le chapitre précédent que «~la tension aux bornes de la bobine parfaite d'un R L parallèle soumis à un échelon de courant était discontinue de 1ère espèce en t = 0~» [38], cela entraîne une discontinuité de 1ère espèce de

  • la puissance calorifique dissipée dans le conducteur ohmique en ainsi que de
  • la puissance électrique instantanée  [39] fournie par l'échelon de courant en  ;

......le bilan de puissance permet alors d'affirmer que le gain horaire d'énergie stockée dans la bobine parfaite sous forme électromagnétique a «~une discontinuité de 1ère espèce ou une continuité en t = 0~» [7] ;

......on peut vérifier que le gain horaire d'énergie stockée dans la bobine parfaite sous forme électromagnétique est

  • continu si la bobine n'est initialement traversée par aucun courant ou
  • discontinu de 1ère espèce si elle est initialement traversée par un courant d'intensité non nulle

......en effet explicitant la «~dérivée temporelle~» [8], on obtient soit encore en utilisant la définition de la tension aux bornes de la bobine parfaite ; l'expression obtenue étant le produit, en , d'une grandeur continue et d'une autre discontinue de 1ère espèce , est discontinue de 1ère espèce dans la mesure où (ce qui nécessite que la bobine soit initialement traversée par un courant) ;

......dans les deux cas, le fait que le gain horaire d'énergie stockée dans la bobine parfaite sous forme électromagnétique soit continu ou discontinu de 1ère espèce est conforme au caractère continu de l'énergie stockée par la bobine sous forme électromagnétique.

Équation différentielle en intensité de courant traversant la bobine puis en la tension à ses bornes d'un R L parallèle soumis à un échelon de courant déduite du bilan de puissance[modifier | modifier le wikicode]

Déduire du bilan de puissance d'un R L parallèle soumis à un échelon de courant d'amplitude I0 l'équation différentielle en intensité iL(t) du courant traversant la bobine[modifier | modifier le wikicode]

......Il suffit d'expliciter le calcul de la dérivée temporelle de l'énergie stockée par la bobine sous forme électromagnétique en fonction de l'intensité du courant la traversant et de la tension à ses bornes soit  ;

......son report dans le bilan de puissance ainsi que celui de la puissance électrique instantanée fournie par l'échelon de courant et de la puissance calorifique dissipée dans le conducteur ohmique, toutes deux exprimées en fonction de la tension, conduit à ou, après simplification par [40], on obtient soit, en éliminant au profit de par définition de la tension aux bornes d'une bobine parfaite on trouve puis en normalisant

ou .

Déduire du bilan de puissance d'un R L parallèle soumis à un échelon de courant d'amplitude I0 l'équation différentielle en tension u(t) aux bornes de la bobine[modifier | modifier le wikicode]

......Ayant déterminé l'équation différentielle en intensité du courant traversant la bobine parfaite, il suffit de dériver une nouvelle fois par rapport à et multiplier par dans le but d'utiliser d'où l'équation différentielle cherchée

ou .

Notes et références[modifier | modifier le wikicode]

  1. Correspondant à la puissance développée par les forces électriques exercées sur les porteurs de charge mobiles présents dans le dipôle à l'instant .
  2. Voir l'«~expression de la puissance électrique instantanée reçue par une portion de circuit en convention récepteur~» du chap. de la leçon «~Signaux physiques (PCSI)~».
  3. 3,0 et 3,1 Ce Qu'il Fallait Démontrer.
  4. Quand l'échelon correspond à l'interrupteur ouvert, l'intensité du courant délivré est nulle et quand l'interrupteur est fermé elle est usuellement non nulle, avec une continuité (ou non) à .
  5. Plus précisément voir «~discontinuité du courant de charge traversant le condensateur d'un circuit résistif soumis à un échelon de tension~» du chap. de la leçon «~Signaux physiques (PCSI)~».
  6. Il ne suffit pas que soit discontinue de 1ère espèce en pour que son produit avec le soit, il faut en plus que , ce qui est réalisé dès lors que l'intensité est discontinue de 1ère espèce compte tenu du fait que .
  7. 7,0 et 7,1 Le 1er membre étant discontinu de 1ère espèce en t = 0, le 2nd l'est de même, ce qui est assuré par le 2ème terme du 2nd membre et autorisant son 1er terme d'être discontinu de 1ère espèce ou continu mais en aucun cas discontinu de 2ème espèce, voir le paragraphe «~Nature de la discontinuité de la somme d'excitations discontinues de numéros d'espèce différents~» du chap. de la leçon «~Outils mathématiques pour la physique (PCSI)~».
  8. 8,0, 8,1, 8,2 et 8,3 Au sens de dérivée temporelle de distributions.
  9. Cette dernière expression résultant de la définition de l'intensité du courant de décharge du condensateur  ;
    ...si on utilise une loi de Kirchhoff pour trouver l'équation différentielle, c'est une loi de maille, le résultat non normalisé va donc être exprimé en  ; le bilan de puissance s'exprimant en , il faudra donc simplifier par une intensité pour aboutir à l'équation différentielle cherchée d'où la nécessité de faire apparaître l'intensité dans l'explicitation du gain horaire de l'énergie stockée dans le condensateur.
  10. Ceci nécessite , c'est effectivement réalisé pour mais pour correspondant à , la simplification ne peut être faite ; toutefois le résultat trouvé par abus de simplification pour reste exact car les termes des deux membres de la relation ainsi trouvée y sont nuls.
  11. 11,0 et 11,1 Ou «~chaleur élémentaire dissipée dans le conducteur ohmique~».
  12. 12,0, 12,1, 12,2 et 12,3 Voir la notion d'«~intégrale généralisée sur un intervalle ouvert dont au moins une des bornes est infinie~» du chap. de la leçon «~Outils mathématiques pour la physique (PCSI)~».
  13. 13,0, 13,1, 13,2, 13,3, 13,4 et 13,5 Par abus on note la limite de la fonction quand soit .
  14. À partir de l'expression de l'intensité du courant de charge explicitée en fonction du temps avec on aurait pu calculer directement soit finalement .
  15. 15,0, 15,1, 15,2 et 15,3 C.-à-d. pour .
  16. En effet étant discontinue de 1ère espèce en avec car il n'y a aucun courant initial dans la bobine, le produit d'une grandeur discontinue en avec une autre continue et nulle au même instant est continue en y prenant une valeur nulle.
  17. En effet étant discontinue de 1ère espèce en avec , le produit d'une grandeur discontinue en avec une autre continue mais non nulle au même instant est discontinu de 1ère espèce en cet instant.
  18. 18,0 et 18,1 Le 1er membre étant discontinu de 1ère espèce en t = 0, le 2nd doit nécessairement l'être aussi mais, comme le 2ème terme de ce membre est continu, c'est le 1er terme qui doit être discontinu de 1ère espèce.
  19. Ceci nécessite , c'est effectivement réalisé pour mais, pour , cela n'étant pas réalisé dans le cas usuel où l'intensité du courant traversant initialement la bobine est nulle, la simplification ne peut être faite ; toutefois le résultat trouvé par abus de simplification pour reste exact car les termes des deux membres de la relation ainsi trouvée y sont nuls.
  20. C.-à-d. que la limite de quand serait finie.
  21. C.-à-d. que la limite de quand serait finie.
  22. Le caractère infini du travail électrique fourni par la source pendant la durée de l'établissement du courant et de la chaleur dissipée dans le conducteur ohmique pendant la même durée est compatible avec le bilan d'énergie, leur différence correspondant au gain d'énergie stockée dans la bobine sous forme électromagnétique étant finie la compatibilité nécessitant qu'il y ait au moins une grandeur infinie dans chaque membre du bilan.
  23. «~Quasiment~» car l'expression de étant exponentielle, la durée pour établir le courant est infinie et l'instant à partir duquel le courant est rigoureusement établi est infini ;
    ...toutefois le raisonnement qui suit est valable si on considère l'instant à partir duquel l'intensité du courant est égale à, par exemple, de , cet instant étant alors fini.
  24. 24,0 et 24,1 C.-à-d. que la limite est infinie.
  25. 25,0 et 25,1 Nous choisissons car, lorsque l'intensité est établie à près, l'énergie stockée dans la bobine (qui est proportionnelle au carré de l'intensité) l'est à près ; d'autre part on vérifie que .
  26. Sachant que .
  27. Ce résultat n'est pas à retenir, il donne simplement un ordre de grandeur : si on établit le courant à près dans la bobine c.-à-d. si l'énergie stockée est établie à près il faut la moitié du temps qui serait nécessaire pour établir le courant à près car et le travail électrique fourni par la source représentant trois fois l'énergie stockée dans la bobine car .
  28. Ainsi l'énergie perdue sous forme calorifique est approximativement égale à deux fois l'énergie stockée dans la bobine car .
  29. Sachant que et .
  30. On ne trouve pas exactement le même résultat qu'en utilisant le bilan d'énergie mais le même ordre de grandeur, la différence correspondant à une erreur d'arrondi, un calcul avec une approximation plus stricte conduirait évidemment au même résultat.
  31. On crée un échelon de courant par une association parallèle d'une source parfaite de courant et d'un interrupteur ; ainsi
    ...quand l'interrupteur est fermé la tension imposée par l'échelon est nulle et ,
    ...quand l'interrupteur est ouvert, et la tension est usuellement non nulle dépendant du dipôle alimenté par ,
    ...la tension étant alors continue (ou non) à instant d'ouverture de l'interrupteur c.-à-d. d'imposition du courant traversant le dipôle extérieur.
  32. 32,0 et 32,1 Un échelon de tension étant obtenu à l'aide d'une source de tension parfaite en série avec un interrupteur que l'on ferme en .
  33. 33,0 et 33,1 Le dual d'un condensateur parfait est une bobine parfaite, étant la grandeur duale de , le dual d'un conducteur ohmique étant un conducteur ohmique, étant la grandeur duale de .
  34. 34,0 et 34,1 Un échelon de courant étant obtenu à l'aide d'une source de courant parfaite en parallèle avec un interrupteur que l'on ouvre en .
  35. En effet étant discontinu de 1ère espèce en avec car il n'y a aucune charge initiale dans le condensateur, le produit d'une grandeur discontinue en avec une autre continue et nulle au même instant est continue en y prenant une valeur nulle.
  36. En effet étant discontinue de 1ère espèce en avec , le produit d'une grandeur discontinue en avec une autre continue mais non nulle au même instant est discontinu de 1ère espèce en cet instant.
  37. Ceci nécessite , c'est effectivement réalisé pour mais, pour , cela n'étant pas réalisé dans le cas usuel où la tension initiale aux bornes du condensateur est nulle, la simplification ne peut être faite ; toutefois le résultat trouvé par abus de simplification pour reste exact car les termes des deux membres de la relation ainsi trouvée y sont nuls.
  38. Plus précisément voir «~discontinuité la tension aux bornes de la partie inductive d'une bobine d'un circuit résistif soumis à un échelon de courant~» du chap. de la leçon «~Signaux physiques (PCSI)~».
  39. Il ne suffit pas que soit discontinue de 1ère espèce en pour que son produit avec le soit, il faut en plus que , ce qui est réalisé dès lors que la tension est discontinue de 1ère espèce compte tenu du fait que .
  40. Ceci nécessite , c'est effectivement réalisé pour mais, pour , cela n'étant pas réalisé dans le cas où l'intensité initiale du courant traversant la bobine parfaite est constante, la simplification ne peut être faite ; toutefois le résultat trouvé par abus de simplification pour reste exact car les termes des deux membres de la relation ainsi trouvée y sont nuls.