Leçons de niveau 12

Approche géométrique des nombres complexes/Exercices/Sur la trigonométrie

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Sur la trigonométrie
Image logo représentative de la faculté
Exercices no4
Leçon : Approche géométrique des nombres complexes
Chapitre du cours : Apports à la trigonométrie

Ces exercices sont de niveau 12.

Exo préc. :Réels et imaginaires purs
Exo suiv. :Sur les racines n-ièmes
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Sur la trigonométrie
Approche géométrique des nombres complexes/Exercices/Sur la trigonométrie
 », n'a pu être restituée correctement ci-dessus.



Exercice 4-1[modifier | modifier le wikicode]

On pose .

a)  Déterminer les réels tels que .

b)  Si , calculer , , , et .

Exercice 4-2[modifier | modifier le wikicode]

Déterminer le module et l'argument des nombres complexes suivants :

  •  ;
  •  ;
  • .

En déduire et , puis et .

Exercice 4-3[modifier | modifier le wikicode]

 Écrire la représentation trigonométrique de

et
.
Représenter leurs images dans le plan complexe.

 Résoudre dans l'équation :

.

Vérifier que les solutions, et , s'expriment simplement à l'aide de et .

 Construire les images et de et . Écrire la représentation trigonométrique de et .

 En déduire les valeurs de , , et , puis et .

Exercice 4-4[modifier | modifier le wikicode]

Linéariser les expressions suivantes :

a)   ;

b)   ;

c)   ;

d)  .

Exercice 4-5[modifier | modifier le wikicode]

Dans cet exercice, désigne le nombre complexe :

.

 Vérifier que .

En déduire la relation :
.

 a)  Exprimez , , et sous forme trigonométrique.

b)  Démontrez les égalités :
.

 Utilisez les résultats des questions précédentes pour trouver une relation entre et ,

puis montrez que est racine de l'équation .
En déduire la valeur de .

Exercice 4-6[modifier | modifier le wikicode]

On rappelle que si est un nombre complexe différent de et un élément de  :

.

Soit un élément de  ; on pose pour élément de  :

et .

 Calculez le nombre complexe .

 En déduire :

  • si ,  ;
  • si , .


30x-Checkmark.png

Si les exercices de cette page vous ont paru trop simples voir éventuellement d'autres exercices plus compliqués sur la trigonométrie utilisant les nombres complexes. Voir aussi les exercices de la leçon Trigonométrie.