Aller au contenu

Équation du troisième degré/Exercices/Exercices sur l'équation du troisième degré

Leçons de niveau 14
Une page de Wikiversité, la communauté pédagogique libre.
Exercices sur l'équation du troisième degré
Image logo représentative de la faculté
Exercices no1
Leçon : Équation du troisième degré
Chapitre du cours : Généralités sur les équations du troisième degré

Exercices de niveau 14.

Exo préc. :Sommaire
Exo suiv. :Sur la somme et le produit des racines
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Exercices sur l'équation du troisième degré
Équation du troisième degré/Exercices/Exercices sur l'équation du troisième degré
 », n'a pu être restituée correctement ci-dessus.




Donner le degré des équations suivantes :

a)

b)

Résoudre les équations suivantes :

 ;
 ;
.

Soit P un polynôme du troisième degré, P' (de degré 2) son polynôme dérivé, et x1 une racine de P.

a) Montrer que x1 est racine multiple de P si et seulement si x1 est racine de P', et que x1 est même racine triple de P si et seulement si x1 est même racine double P'.

b) Si x1 est racine seulement simple de P' (donc racine seulement double de P), donner sa valeur en fonction des coefficients de P, à l'aide des calculs faits en cours pour trouver le « résultant R2-3 ».

c) En déduire les solutions des deux équations suivantes :

α)  ;
β) .

Résoudre le système de trois équations à trois inconnues suivant :

.

Soient un polynôme du second degré et . Montrer que

.

On veut construire une boîte de base carrée de volume 562,5 cm3 en découpant, à chaque coin d'une plaque en carton de 20 cm de côté, un carré de côté x cm, et en repliant bord à bord les quatre rectangles ainsi créés.

  1. Vérifier qu'une solution est x = 2,5.
  2. Montrer qu'il y a une seule autre solution et la calculer.