Leçons de niveau 13

Théorie des groupes/Exercices/Groupe à opérateurs

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Groupe à opérateurs
Image logo représentative de la faculté
Exercices no15
Leçon : Théorie des groupes
Chapitre du cours : Groupe à opérateurs

Exercices de niveau 13.

Exo préc. :Théorème de Jordan-Hölder
Exo suiv. :Commutateurs, groupe dérivé
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Groupe à opérateurs
Théorie des groupes/Exercices/Groupe à opérateurs
 », n'a pu être restituée correctement ci-dessus.




Problème 1[modifier | modifier le wikicode]

Soit K un corps (que nous supposerons commutatif pour simplifier les expressions) et V un espace vectoriel de dimension 1 sur K. On a noté dans la théorie que le groupe additif V, muni de la loi externe de l'espace vectoriel, est un groupe à opérateurs qui est simple comme groupe à opérateurs. En déduire un exemple de groupe à opérateurs qui est simple comme groupe à opérateurs mais n’est pas simple comme groupe.