Une page de Wikiversité, la communauté pédagogique libre.
En raison de limitations techniques, la typographie souhaitable du titre, «
Exercice : Changement d'indiceSommation/Exercices/Changement d'indice », n'a pu être restituée correctement ci-dessus.
Calculer :
a
)
∑
k
=
1
n
2
k
2
+
2
k
b
)
∑
k
=
1
n
ln
(
1
+
2
k
)
{\displaystyle a)\,\sum _{k=1}^{n}{\frac {2}{k^{2}+2k}}\qquad \qquad \qquad b)\,\sum _{k=1}^{n}\ln \left(1+{\frac {2}{k}}\right)}
.
Solution
a) On a :
∑
k
=
1
n
2
k
2
+
2
k
=
∑
k
=
1
n
2
k
(
k
+
2
)
=
∑
k
=
1
n
1
k
−
∑
k
=
1
n
1
k
+
2
{\displaystyle \sum _{k=1}^{n}{\frac {2}{k^{2}+2k}}=\sum _{k=1}^{n}{\frac {2}{k(k+2)}}=\sum _{k=1}^{n}{\frac {1}{k}}-\sum _{k=1}^{n}{\frac {1}{k+2}}}
.
En faisant un changement d'indice dans la deuxième somme, on obtient :
∑
k
=
1
n
2
k
2
+
2
k
=
∑
k
=
1
n
1
k
−
∑
k
=
3
n
+
2
1
k
=
1
+
1
2
+
∑
k
=
3
n
1
k
−
∑
k
=
3
n
1
k
−
1
n
+
1
−
1
n
+
2
=
1
+
1
2
−
1
n
+
1
−
1
n
+
2
=
n
(
3
n
+
5
)
2
(
n
+
1
)
(
n
+
2
)
.
{\displaystyle {\begin{aligned}\sum _{k=1}^{n}{\frac {2}{k^{2}+2k}}&=\sum _{k=1}^{n}{\frac {1}{k}}-\sum _{k=3}^{n+2}{\frac {1}{k}}\\&=1+{\frac {1}{2}}+\sum _{k=3}^{n}{\frac {1}{k}}-\sum _{k=3}^{n}{\frac {1}{k}}-{\frac {1}{n+1}}-{\frac {1}{n+2}}\\&=1+{\frac {1}{2}}-{\frac {1}{n+1}}-{\frac {1}{n+2}}\\&={\frac {n(3n+5)}{2(n+1)(n+2)}}.\end{aligned}}}
b) On a :
∑
k
=
1
n
ln
(
1
+
2
k
)
=
∑
k
=
1
n
ln
k
+
2
k
=
∑
k
=
1
n
ln
(
k
+
2
)
−
∑
k
=
1
n
ln
k
{\displaystyle \sum _{k=1}^{n}\ln \left(1+{\frac {2}{k}}\right)=\sum _{k=1}^{n}\ln {\frac {k+2}{k}}=\sum _{k=1}^{n}\ln(k+2)-\sum _{k=1}^{n}\ln k}
.
En faisant un changement d'indice dans la première somme, on obtient :
∑
k
=
1
n
ln
(
1
+
2
k
)
=
∑
k
=
3
n
+
2
ln
(
k
)
−
∑
k
=
1
n
ln
k
=
ln
(
n
+
1
)
+
ln
(
n
+
2
)
+
∑
k
=
3
n
ln
k
−
∑
k
=
3
n
ln
k
−
ln
2
=
ln
(
n
+
1
)
+
ln
(
n
+
2
)
−
ln
2
=
ln
(
n
+
1
)
(
n
+
2
)
2
.
{\displaystyle {\begin{aligned}\sum _{k=1}^{n}\ln \left(1+{\frac {2}{k}}\right)&=\sum _{k=3}^{n+2}\ln(k)-\sum _{k=1}^{n}\ln k\\&=\ln(n+1)+\ln(n+2)+\sum _{k=3}^{n}\ln k-\sum _{k=3}^{n}\ln k-\ln 2\\&=\ln(n+1)+\ln(n+2)-\ln 2\\&=\ln {\frac {(n+1)(n+2)}{2}}.\end{aligned}}}
Calculer :
a
)
∑
k
=
0
n
(
k
+
1
)
2
b
)
∑
k
=
0
n
−
1
(
n
−
k
+
1
)
2
{\displaystyle a)\,\sum _{k=0}^{n}(k+1)^{2}\qquad \qquad \qquad b)\,\sum _{k=0}^{n-1}(n-k+1)^{2}}
Solution
a) Par glissement d'indice, on obtient :
∑
k
=
0
n
(
k
+
1
)
2
=
∑
j
=
1
n
+
1
j
2
=
(
n
+
1
)
(
n
+
2
)
(
2
n
+
3
)
6
{\displaystyle \sum _{k=0}^{n}(k+1)^{2}=\sum _{j=1}^{n+1}j^{2}={\frac {(n+1)(n+2)(2n+3)}{6}}}
.
b) En posant
j
=
n
−
k
+
1
{\displaystyle j=n-k+1}
, on obtient :
∑
k
=
0
n
−
1
(
n
−
k
+
1
)
2
=
∑
j
=
2
n
+
1
j
2
=
(
∑
j
=
0
n
+
1
j
2
)
−
1
=
(
n
+
1
)
(
n
+
2
)
(
2
n
+
3
)
6
−
1
=
n
(
2
n
2
+
9
n
+
13
)
6
.
{\displaystyle {\begin{aligned}\sum _{k=0}^{n-1}(n-k+1)^{2}&=\sum _{j=2}^{n+1}j^{2}\\&=\left(\sum _{j=0}^{n+1}j^{2}\right)-1\\&={\frac {(n+1)(n+2)(2n+3)}{6}}-1\\&={\frac {n(2n^{2}+9n+13)}{6}}.\end{aligned}}}
Calculer :
a
)
∑
k
=
2
n
1
k
3
−
k
b
)
∑
k
=
2
n
ln
(
1
−
1
k
2
)
{\displaystyle a)\,\sum _{k=2}^{n}{\frac {1}{k^{3}-k}}\qquad \qquad \qquad b)\,\sum _{k=2}^{n}\ln \left(1-{\frac {1}{k^{2}}}\right)}
Solution
a)
∑
k
=
2
n
1
k
3
−
k
=
∑
k
=
2
n
1
k
(
k
+
1
)
(
k
−
1
)
Factorisation
=
−
∑
k
=
2
n
1
k
+
1
2
∑
k
=
2
n
1
k
+
1
+
1
2
∑
k
=
2
n
1
k
−
1
Décomposition en éléments simples
=
−
∑
k
=
2
n
1
k
+
1
2
∑
k
=
3
n
+
1
1
k
+
1
2
∑
k
=
1
n
−
1
1
k
Glissement d'indice
=
−
∑
k
=
3
n
−
1
1
k
−
1
2
−
1
n
+
1
2
∑
k
=
3
n
−
1
1
k
+
1
2
.
1
n
+
1
2
.
1
n
+
1
+
1
2
∑
k
=
3
n
−
1
1
k
+
1
2
+
1
2
.
1
2
Extraction de termes
=
−
1
2
−
1
n
+
1
2
n
+
1
2
(
n
+
1
)
+
1
2
+
1
4
Simplification par les sommes
=
(
n
−
1
)
(
n
+
2
)
4
n
(
n
+
1
)
{\displaystyle {\begin{aligned}\sum _{k=2}^{n}{\frac {1}{k^{3}-k}}&=\sum _{k=2}^{n}{\frac {1}{k(k+1)(k-1)}}\qquad \qquad {\text{Factorisation}}\\&=-\sum _{k=2}^{n}{\frac {1}{k}}+{\frac {1}{2}}\sum _{k=2}^{n}{\frac {1}{k+1}}+{\frac {1}{2}}\sum _{k=2}^{n}{\frac {1}{k-1}}\qquad \qquad {\text{Décomposition en éléments simples}}\\&=-\sum _{k=2}^{n}{\frac {1}{k}}+{\frac {1}{2}}\sum _{k=3}^{n+1}{\frac {1}{k}}+{\frac {1}{2}}\sum _{k=1}^{n-1}{\frac {1}{k}}\qquad \qquad {\text{Glissement d'indice}}\\&=-\sum _{k=3}^{n-1}{\frac {1}{k}}-{\frac {1}{2}}-{\frac {1}{n}}+{\frac {1}{2}}\sum _{k=3}^{n-1}{\frac {1}{k}}+{\frac {1}{2}}.{\frac {1}{n}}+{\frac {1}{2}}.{\frac {1}{n+1}}+{\frac {1}{2}}\sum _{k=3}^{n-1}{\frac {1}{k}}+{\frac {1}{2}}+{\frac {1}{2}}.{\frac {1}{2}}\qquad \qquad {\text{Extraction de termes}}\\&=-{\frac {1}{2}}-{\frac {1}{n}}+{\frac {1}{2n}}+{\frac {1}{2(n+1)}}+{\frac {1}{2}}+{\frac {1}{4}}\qquad \qquad {\text{Simplification par les sommes}}\\&={\frac {(n-1)(n+2)}{4n(n+1)}}\end{aligned}}}
ou plus simplement, par télescopage comme dans l'exercice 2-4 d) :
∑
k
=
2
n
1
k
3
−
k
=
1
2
∑
k
=
2
n
(
1
(
k
−
1
)
k
−
1
k
(
k
+
1
)
)
=
1
2
(
1
(
2
−
1
)
2
−
1
n
(
n
+
1
)
)
=
(
n
−
1
)
(
n
+
2
)
4
n
(
n
+
1
)
{\displaystyle \sum _{k=2}^{n}{\frac {1}{k^{3}-k}}={\frac {1}{2}}\sum _{k=2}^{n}\left({\frac {1}{(k-1)k}}-{\frac {1}{k(k+1)}}\right)={\frac {1}{2}}\left({\frac {1}{(2-1)2}}-{\frac {1}{n(n+1)}}\right)={\frac {(n-1)(n+2)}{4n(n+1)}}}
.
b)
ln
(
1
−
1
k
2
)
=
ln
k
2
−
1
k
2
=
ln
(
k
+
1
)
(
k
−
1
)
k
2
=
ln
(
k
+
1
)
+
ln
(
k
−
1
)
−
2
ln
k
{\displaystyle \ln \left(1-{\frac {1}{k^{2}}}\right)=\ln {\frac {k^{2}-1}{k^{2}}}=\ln {\frac {(k+1)(k-1)}{k^{2}}}=\ln(k+1)+\ln(k-1)-2\ln k}
donc
∑
k
=
2
n
ln
(
1
−
1
k
2
)
=
∑
k
=
2
n
ln
(
k
+
1
)
+
∑
k
=
2
n
ln
(
k
−
1
)
−
2
∑
k
=
2
n
ln
k
{\displaystyle \sum _{k=2}^{n}\ln \left(1-{\frac {1}{k^{2}}}\right)=\sum _{k=2}^{n}\ln(k+1)+\sum _{k=2}^{n}\ln(k-1)-2\sum _{k=2}^{n}\ln k}
.
En faisant un changement d'indice dans la première et la deuxième somme, on obtient :
∑
k
=
2
n
ln
(
1
−
1
k
2
)
=
∑
k
=
3
n
+
1
ln
k
+
∑
k
=
1
n
−
1
ln
k
−
2
∑
k
=
2
n
ln
k
=
∑
k
=
2
n
ln
k
+
ln
(
n
+
1
)
−
ln
2
+
∑
k
=
2
n
ln
k
−
ln
n
−
2
∑
k
=
2
n
ln
k
=
ln
(
n
+
1
)
−
ln
2
−
ln
n
=
ln
n
+
1
2
n
.
{\displaystyle {\begin{aligned}\sum _{k=2}^{n}\ln \left(1-{\frac {1}{k^{2}}}\right)&=\sum _{k=3}^{n+1}\ln k+\sum _{k=1}^{n-1}\ln k-2\sum _{k=2}^{n}\ln k=\sum _{k=2}^{n}\ln k+\ln(n+1)-\ln 2+\sum _{k=2}^{n}\ln k-\ln n-2\sum _{k=2}^{n}\ln k\\&=\ln(n+1)-\ln 2-\ln n=\ln {\frac {n+1}{2n}}.\end{aligned}}}
Plus simplement, par télescopage :
∑
k
=
2
n
ln
(
1
−
1
k
2
)
=
∑
k
=
2
n
(
ln
k
+
1
k
−
ln
k
k
−
1
)
=
ln
n
+
1
n
−
ln
2
2
−
1
=
ln
n
+
1
2
n
{\displaystyle \sum _{k=2}^{n}\ln \left(1-{\frac {1}{k^{2}}}\right)=\sum _{k=2}^{n}\left(\ln {\frac {k+1}{k}}-\ln {\frac {k}{k-1}}\right)=\ln {\frac {n+1}{n}}-\ln {\frac {2}{2-1}}=\ln {\frac {n+1}{2n}}}
.
Calculer :
∑
k
=
0
∞
3
k
+
4
k
5
k
{\displaystyle \sum _{k=0}^{\infty }{\frac {3^{k}+4^{k}}{5^{k}}}}
.
Solution
∑
k
=
0
∞
3
k
+
4
k
5
k
=
∑
k
=
0
∞
(
3
5
)
k
+
∑
k
=
0
∞
(
4
5
)
k
=
1
1
−
3
5
+
1
1
−
4
5
=
15
2
{\displaystyle \sum _{k=0}^{\infty }{\frac {3^{k}+4^{k}}{5^{k}}}=\sum _{k=0}^{\infty }\left({\frac {3}{5}}\right)^{k}+\sum _{k=0}^{\infty }\left({\frac {4}{5}}\right)^{k}={\frac {1}{1-{\frac {3}{5}}}}+{\frac {1}{1-{\frac {4}{5}}}}={\frac {15}{2}}}
.
Calculer :
∑
i
=
0
3
n
E
(
i
2
3
)
{\displaystyle \sum _{i=0}^{3n}{E\left({\frac {i^{2}}{3}}\right)}}
Solution
On a :
∑
i
=
0
3
n
E
(
i
2
3
)
=
∑
k
=
0
E
(
3
n
3
)
E
(
(
3
k
)
2
3
)
+
∑
k
=
0
E
(
3
n
−
1
3
)
E
(
(
3
k
+
1
)
2
3
)
+
∑
k
=
0
E
(
3
n
−
2
3
)
E
(
(
3
k
+
2
)
2
3
)
=
∑
k
=
0
n
3
k
2
+
∑
k
=
0
n
−
1
(
3
k
2
+
2
k
)
+
∑
k
=
0
n
−
1
(
3
k
2
+
4
k
+
1
)
=
9
∑
k
=
0
n
k
2
+
6
∑
k
=
0
n
k
+
∑
k
=
0
n
−
1
1
−
6
n
2
−
6
n
=
9
n
(
n
+
1
)
(
2
n
+
1
)
6
+
6
n
(
n
+
1
)
2
+
n
−
6
n
2
−
6
n
=
n
(
6
n
2
+
3
n
−
1
)
2
{\displaystyle {\begin{aligned}\sum _{i=0}^{3n}{E\left({\frac {i^{2}}{3}}\right)}&=\sum _{k=0}^{E\left({\frac {3n}{3}}\right)}{E\left({\frac {(3k)^{2}}{3}}\right)}+\sum _{k=0}^{E\left({\frac {3n-1}{3}}\right)}{E\left({\frac {(3k+1)^{2}}{3}}\right)}+\sum _{k=0}^{E\left({\frac {3n-2}{3}}\right)}{E\left({\frac {(3k+2)^{2}}{3}}\right)}\\&=\sum _{k=0}^{n}3k^{2}+\sum _{k=0}^{n-1}(3k^{2}+2k)+\sum _{k=0}^{n-1}(3k^{2}+4k+1)\\&=9\sum _{k=0}^{n}k^{2}+6\sum _{k=0}^{n}k+\sum _{k=0}^{n-1}1-6n^{2}-6n\\&=9{\frac {n(n+1)(2n+1)}{6}}+6{\frac {n(n+1)}{2}}+n-6n^{2}-6n\\&={\frac {n(6n^{2}+3n-1)}{2}}\end{aligned}}}
Ceci est une formalisation de l'exercice 2-6.
En faisant un glissement d'indice dans des sommes de la forme :
∑
k
=
0
n
(
k
+
1
)
m
{\displaystyle \sum _{k=0}^{n}(k+1)^{m}}
,
redémontrer successivement les formules bien connues :
a
)
∑
k
=
1
n
k
=
n
(
n
+
1
)
2
b
)
∑
k
=
1
n
k
2
=
n
(
n
+
1
)
(
2
n
+
1
)
6
c
)
∑
k
=
1
n
k
3
=
n
2
(
n
+
1
)
2
4
{\displaystyle a)\,\sum _{k=1}^{n}k={\frac {n(n+1)}{2}}\qquad \qquad \qquad b)\,\sum _{k=1}^{n}k^{2}={\frac {n(n+1)(2n+1)}{6}}\qquad \qquad \qquad c)\,\sum _{k=1}^{n}k^{3}={\frac {n^{2}(n+1)^{2}}{4}}}
.
Solution
a)
0
=
∑
k
=
0
n
(
k
+
1
)
2
−
∑
k
=
1
n
+
1
k
2
=
∑
k
=
0
n
(
k
2
+
2
k
+
1
)
−
∑
k
=
0
n
+
1
k
2
=
∑
k
=
0
n
k
2
+
2
∑
k
=
0
n
k
+
∑
k
=
0
n
1
−
∑
k
=
0
n
k
2
−
(
n
+
1
)
2
=
2
∑
k
=
0
n
k
+
(
n
+
1
)
−
(
n
+
1
)
2
=
2
∑
k
=
0
n
k
−
n
(
n
+
1
)
{\displaystyle {\begin{aligned}0&=\sum _{k=0}^{n}(k+1)^{2}-\sum _{k=1}^{n+1}k^{2}\\&=\sum _{k=0}^{n}(k^{2}+2k+1)-\sum _{k=0}^{n+1}k^{2}\\&=\sum _{k=0}^{n}k^{2}+2\sum _{k=0}^{n}k+\sum _{k=0}^{n}1-\sum _{k=0}^{n}k^{2}-(n+1)^{2}\\&=2\sum _{k=0}^{n}k+(n+1)-(n+1)^{2}\\&=2\sum _{k=0}^{n}k-n(n+1)\end{aligned}}}
donc
∑
k
=
1
n
k
=
∑
k
=
0
n
k
=
n
(
n
+
1
)
2
{\displaystyle \sum _{k=1}^{n}k=\sum _{k=0}^{n}k={\frac {n(n+1)}{2}}}
.
b)
0
=
∑
k
=
0
n
(
k
+
1
)
3
−
∑
k
=
1
n
+
1
k
3
=
∑
k
=
0
n
(
k
3
+
3
k
2
+
3
k
+
1
)
−
∑
k
=
0
n
+
1
k
3
=
∑
k
=
0
n
k
3
+
3
∑
k
=
0
n
k
2
+
3
∑
k
=
0
n
k
+
∑
k
=
0
n
1
−
∑
k
=
0
n
k
3
−
(
n
+
1
)
3
=
3
∑
k
=
0
n
k
2
+
3
n
(
n
+
1
)
2
+
(
n
+
1
)
−
(
n
+
1
)
3
=
3
∑
k
=
0
n
k
2
−
n
(
n
+
1
)
(
2
n
+
1
)
2
{\displaystyle {\begin{aligned}0&=\sum _{k=0}^{n}(k+1)^{3}-\sum _{k=1}^{n+1}k^{3}\\&=\sum _{k=0}^{n}(k^{3}+3k^{2}+3k+1)-\sum _{k=0}^{n+1}k^{3}\\&=\sum _{k=0}^{n}k^{3}+3\sum _{k=0}^{n}k^{2}+3\sum _{k=0}^{n}k+\sum _{k=0}^{n}1-\sum _{k=0}^{n}k^{3}-(n+1)^{3}\\&=3\sum _{k=0}^{n}k^{2}+3{\frac {n(n+1)}{2}}+(n+1)-(n+1)^{3}\\&=3\sum _{k=0}^{n}k^{2}-{\frac {n(n+1)(2n+1)}{2}}\end{aligned}}}
donc
∑
k
=
1
n
k
2
=
∑
k
=
0
n
k
2
=
n
(
n
+
1
)
(
2
n
+
1
)
6
{\displaystyle \sum _{k=1}^{n}k^{2}=\sum _{k=0}^{n}k^{2}={\frac {n(n+1)(2n+1)}{6}}}
.
c)
0
=
∑
k
=
0
n
(
k
+
1
)
4
−
∑
k
=
1
n
+
1
k
4
=
∑
k
=
0
n
(
k
4
+
4
k
3
+
6
k
2
+
4
k
+
1
)
−
∑
k
=
0
n
+
1
k
4
=
∑
k
=
0
n
k
4
+
4
∑
k
=
0
n
k
3
+
6
∑
k
=
0
n
k
2
+
4
∑
k
=
0
n
k
+
∑
k
=
0
n
1
−
∑
k
=
0
n
k
4
−
(
n
+
1
)
4
=
4
∑
k
=
0
n
k
3
+
6
n
(
n
+
1
)
(
2
n
+
1
)
6
+
4
n
(
n
+
1
)
2
+
n
+
1
−
(
n
+
1
)
4
=
4
∑
k
=
0
n
k
3
−
n
2
(
n
+
1
)
2
{\displaystyle {\begin{aligned}0&=\sum _{k=0}^{n}(k+1)^{4}-\sum _{k=1}^{n+1}k^{4}\\&=\sum _{k=0}^{n}(k^{4}+4k^{3}+6k^{2}+4k+1)-\sum _{k=0}^{n+1}k^{4}\\&=\sum _{k=0}^{n}k^{4}+4\sum _{k=0}^{n}k^{3}+6\sum _{k=0}^{n}k^{2}+4\sum _{k=0}^{n}k+\sum _{k=0}^{n}1-\sum _{k=0}^{n}k^{4}-(n+1)^{4}\\&=4\sum _{k=0}^{n}k^{3}+6{\frac {n(n+1)(2n+1)}{6}}+4{\frac {n(n+1)}{2}}+n+1-(n+1)^{4}\\&=4\sum _{k=0}^{n}k^{3}-n^{2}(n+1)^{2}\end{aligned}}}
donc
∑
k
=
1
n
k
3
=
∑
k
=
0
n
k
3
=
n
2
(
n
+
1
)
2
4
{\displaystyle \sum _{k=1}^{n}k^{3}=\sum _{k=0}^{n}k^{3}={\frac {n^{2}(n+1)^{2}}{4}}}
.
Calculer
∑
i
=
0
n
[
X
i
(
n
i
)
∑
k
=
i
n
(
n
−
i
n
−
k
)
]
{\displaystyle \sum _{i=0}^{n}\left[X^{i}{\binom {n}{i}}\sum _{k=i}^{n}{n-i \choose n-k}\right]}
.
Solution
D'après la formule du binôme,
∀
i
∈
[
0
,
n
]
∑
k
=
i
n
(
n
−
i
n
−
k
)
=
∑
j
=
0
n
−
i
(
n
−
i
n
−
i
−
j
)
=
∑
j
=
0
n
−
i
(
n
−
i
j
)
=
2
n
−
i
{\displaystyle \forall i\in \left[0,n\right]\quad \sum _{k=i}^{n}{n-i \choose n-k}=\sum _{j=0}^{n-i}{n-i \choose n-i-j}=\sum _{j=0}^{n-i}{\binom {n-i}{j}}=2^{n-i}}
puis
∑
i
=
0
n
[
X
i
(
n
i
)
2
n
−
i
]
=
(
2
+
X
)
n
{\displaystyle \sum _{i=0}^{n}\left[X^{i}{\binom {n}{i}}2^{n-i}\right]=(2+X)^{n}}
.