Leçons de niveau 14

Fonctions d'une variable réelle/Exercices/Développements limités

Une page de Wikiversité, la communauté pédagogique libre.
Aller à la navigation Aller à la recherche
Développements limités
Image logo représentative de la faculté
Exercices no8
Leçon : Fonctions d'une variable réelle
Chapitre du cours : Développements limités

Exercices de niveau 14.

Exo préc. :Calcul de limites
Exo suiv. :Convexité
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Développements limités
Fonctions d'une variable réelle/Exercices/Développements limités
 », n'a pu être restituée correctement ci-dessus.



Exercice 8-1[modifier | modifier le wikicode]

Soit .

  1. Montrer, par la formule de Taylor-Lagrange, qu'il existe un nombre tel que .
  2. En utilisant la formule de Taylor-Young en 0 à l'ordre 5 de , montrer que .

Exercice 8-2[modifier | modifier le wikicode]

Calculer le développement limité de en 0 à l'ordre 3.

Calculer le développement limité de en 0 à l'ordre 9.

Calculer le développement limité de en 0 à l'ordre 5.

Calculer le développement limité de en 0 à l'ordre 2.

Exercice 8-3[modifier | modifier le wikicode]

Soit admettant en 0 le développement limité suivant à l'ordre 2 :

avec .

Elle admet donc, au voisinage de 0, une fonction réciproque possédant un d.l. à l'ordre 2 en 0 :

.

Déterminer .

Soient et .

Trouver et pour que , et calculer alors le d.l. de (en 0, à l'ordre 5).

Exercice 8-4[modifier | modifier le wikicode]

Soit

Démontrer que admet à tout ordre un d.l. en 0, que l'on précisera.

Exercice 8-5[modifier | modifier le wikicode]

Soit .

  1. En utilisant la formule de Taylor-Laplace, montrer que pour tout ,
    .
  2. En déduire que .

Exercice 8-6[modifier | modifier le wikicode]

Redémontrer le théorème de Taylor-Young par application itérée de la première règle de l'Hôpital.

Exercice 8-7[modifier | modifier le wikicode]

Donner les d.l. à l'ordre 3 :

  • en 0 de  ;
  • en 0 de , fois (la k-ième itérée de , à ne pas confondre avec la k-ième puissance, , pour tout ) ;
  • en 0 de , pour un réel fixé ;
  • en 1 de .

Exercice 8-8[modifier | modifier le wikicode]

Calculer les limites en des trois fonctions suivantes (, ) :

  •  ;
  •  ;
  • .

Exercice 8-9[modifier | modifier le wikicode]

On donne l'équation de van der Waals

désignent respectivement la pression, la température et le volume occupé par un gaz et sont des constantes.

Quand devient infiniment grand et reste constant, donner un développement limité à l'ordre 2 de en fonction de l'infiniment petit .

Exercice 8-10[modifier | modifier le wikicode]

Déterminer les asymptotes et les positions par rapport à ces asymptotes des courbes suivantes :

  1.  ;
  2. .

Étudier les fonctions suivantes :

, , .

Exercice 8-11[modifier | modifier le wikicode]

On pose . En utilisant un d.l. de en 0 à un ordre adéquat, calculer pour tout .

Soient un intervalle ouvert contenant 0 et une fonction définie sur par :

Former le d.l. de en 0 à l'ordre 4.

Exercice 8-12[modifier | modifier le wikicode]

On définit sur une fonction C : .

À l'aide d'un d.l. de , montrer que admet un prolongement deux fois dérivable en 0.

Exercice 8-12[modifier | modifier le wikicode]

Déterminer le développement limité à l'ordre 10 en 0 de la fonction définie sur par .

Liens externes[modifier | modifier le wikicode]