Discussion:Équation du quatrième degré

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche

Proposition d'un problème solutionné par une équation du quatrième degré[modifier le wikicode]

Schéma explicatif

Calcul de la hauteur du sol au point de contact avec un mur d'une échelle positionnée de façon particulière :

  1. Trouver l'équation,
  2. Calculer la hauteur.

Le message qui précède, non signé?, a été déposé par Dumontierc (d · c · b · s), le 7/5/2020.

Solution
D'après pythagore, nous avons :
soit :
Ce n'est donc pas un problème du quatrième degré ! Lydie Noria (discussion) 10/5
Notification Lydie Noria : se trompe. Le problème de Notification Dumontierc : est bien du quatrième degré :
En notant d la base du grand triangle,
et donc en éliminant  :
.
L'équation a 2 solutions > 1 (environ 1,36 et 3,76) et 2 solutions < 1.
Anne, 9/8
p.s. : les 2 solutions > 1 se déduisent l'une de l'autre en intervertissant d et h (on le voit simplement physiquement, mais aussi sur les équations car , donc les 2 solutions < 1 se déduisent de même l'une de l'autre).
Ceci permet de factoriser et résoudre :
avec
et les deux solutions > 1, associées à , sont
.
Effectivement, j’avais mal regardé la figure ! Y a plus qu’à mettre le problème dans la page Équation du quatrième degré/Exercices/Résolution de problèmes du quatrième degré. --Lydie Noria (discussion) 10/8
Fait Fait. Anne, 15/8/2020