Aller au contenu

Discussion:Équation du quatrième degré

Le contenu de la page n’est pas pris en charge dans d’autres langues.
Ajouter un sujet
Une page de Wikiversité, la communauté pédagogique libre.

Proposition d'un problème solutionné par une équation du quatrième degré

[modifier le wikicode]
Schéma explicatif

Calcul de la hauteur du sol au point de contact avec un mur d'une échelle positionnée de façon particulière :

  1. Trouver l'équation,
  2. Calculer la hauteur.

Le message qui précède, non signé?, a été déposé par Dumontierc (d · c · b · s), le 7/5/2020.

Solution
D'après pythagore, nous avons :
soit :
Ce n'est donc pas un problème du quatrième degré ! Lydie Noria (discussion) 10/5
Notification Lydie Noria : se trompe. Le problème de Notification Dumontierc : est bien du quatrième degré :
En notant d la base du grand triangle,
et donc en éliminant  :
.
L'équation a 2 solutions > 1 (environ 1,36 et 3,76) et 2 solutions < 1.
Anne, 9/8
p.s. : les 2 solutions > 1 se déduisent l'une de l'autre en intervertissant d et h (on le voit simplement physiquement, mais aussi sur les équations car , donc les 2 solutions < 1 se déduisent de même l'une de l'autre).
Ceci permet de factoriser et résoudre :
avec
et les deux solutions > 1, associées à , sont
.
Effectivement, j’avais mal regardé la figure ! Y a plus qu’à mettre le problème dans la page Équation du quatrième degré/Exercices/Résolution de problèmes du quatrième degré. --Lydie Noria (discussion) 10/8
Fait Fait. Anne, 15/8/2020