Discussion:Équation du quatrième degré
Ajouter un sujetApparence
Équation du quatrième degré fait partie de la faculté de Mathématiques et du projet Mathématiques. Si vous voulez participer, vous pouvez modifier cette leçon ou visiter la page du projet où vous pourrez vous joindre au projet et consulter la liste des tâches et des objectifs. Vous pouvez aussi créer des exercices pour cette leçon. | |
Complet | Cette leçon a été classée comme d'avancement complet selon les critères d'évaluation de Wikiversité. |
Proposition d'un problème solutionné par une équation du quatrième degré
[modifier le wikicode]Calcul de la hauteur du sol au point de contact avec un mur d'une échelle positionnée de façon particulière :
- Trouver l'équation,
- Calculer la hauteur.
— Le message qui précède, non signé?, a été déposé par Dumontierc (d · c · b · s), le 7/5/2020.
- Solution
- D'après pythagore, nous avons :
- soit :
- Ce n'est donc pas un problème du quatrième degré ! Lydie Noria (discussion) 10/5
- Lydie Noria : se trompe. Le problème de Dumontierc : est bien du quatrième degré :
- En notant d la base du grand triangle,
- et donc en éliminant :
- .
- L'équation a 2 solutions > 1 (environ 1,36 et 3,76) et 2 solutions < 1.
- Anne, 9/8
- p.s. : les 2 solutions > 1 se déduisent l'une de l'autre en intervertissant d et h (on le voit simplement physiquement, mais aussi sur les équations car , donc les 2 solutions < 1 se déduisent de même l'une de l'autre).
- Ceci permet de factoriser et résoudre :
- avec
- et les deux solutions > 1, associées à , sont
- .
- Effectivement, j’avais mal regardé la figure ! Y a plus qu’à mettre le problème dans la page Équation du quatrième degré/Exercices/Résolution de problèmes du quatrième degré. --Lydie Noria (discussion) 10/8
- Fait. Anne, 15/8/2020
- Effectivement, j’avais mal regardé la figure ! Y a plus qu’à mettre le problème dans la page Équation du quatrième degré/Exercices/Résolution de problèmes du quatrième degré. --Lydie Noria (discussion) 10/8