Leçons de niveau 15

Théorie physique des distributions/Exercices/Transformée de Fourier

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Transformée de Fourier
Image logo représentative de la faculté
Exercices no6
Leçon : Théorie physique des distributions
Chapitre du cours : Transformée de Fourier

Ces exercices sont de niveau 15.

Exo préc. :Équations différentielles
Exo suiv. :Transformée de Laplace
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Transformée de Fourier
Théorie physique des distributions/Exercices/Transformée de Fourier
 », n'a pu être restituée correctement ci-dessus.



Exercice 6-1[modifier | modifier le wikicode]

  Calculer la transformée de Fourier de la distribution .

  Calculer la transformée de Fourier de la distribution régulière associée aux fonctions et .

Exercice 6-2[modifier | modifier le wikicode]

On rappelle la définition de la fonction porte Π étudiée dans l'exercice 4-1 :

a - Calculer directement la transformée de Fourier de la fonction Π.

b - Calculer la transformée de Fourier de la fonction Π après l'avoir écrit en fonction de la fonction de Heaviside.

Exercice 6-3[modifier | modifier le wikicode]

On rappelle la définition de la fonction ⋀ rencontrée dans l'exercice 4-1 :

a - Calculer directement la transformée de Fourier de la fonction ⋀.

b - On a vu dans l'exercice 4-1 que ⋀ = Π ⋆ Π. En déduire un autre calcul de la transformée de Fourier de la fonction ⋀.