Aller au contenu

Discussion:Théorie des groupes/Conjugaison, centralisateur, normalisateur

Le contenu de la page n’est pas pris en charge dans d’autres langues.
Ajouter un sujet
Une page de Wikiversité, la communauté pédagogique libre.

Inclusion non suffisante dans la définition d'un élément normalisant un sous-groupe

[modifier le wikicode]
Dans son dernier commentaire de modification, Anne a demandé un exemple simple de la situation suivante : H est un sous-groupe d'un groupe G et le sous-monoïde de G formé par les éléments de G tels que soit contenu dans H n'est pas un sous-groupe de G.
Bourbaki, Algèbre, 1970, ch. I, § 5, n° 3, p. I.54, dit que le cas se présente et renvoie à l'exercice 27 sur ledit § 5, p. I.134. Voici l'énoncé de cet exercice : "Soit Y une partie d'un ensemble X et soit A le fixateur de Y dans le groupe des permutations de X. [Cela signifie que A est l'ensemble des permutations de X qui fixent chaque élément de Y. A est donc un sous-groupe de .] Soit M le sous-monoïde de formé des éléments tels que [Je suppose que désigne l'inclusion au sens large.] Montrer que M est un sous-groupe de si et seulement l'un des ensembles et est fini." Bourbaki ne donne pas d'indication.
J'ai dans mes notes une solution de cet exercice, mais elle fait deux pages , donc je recule devant la tâche de la copier. Sauf erreur de ma part, la meilleure façon de procéder est de distinguer entre les cas et
Ou bien on donne l'exercice de Bourbaki comme exercice du cours ou bien on se contente de renvoyer à Bourbaki. Marvoir (discuter) 6 février 2022 à 09:46 (UTC)Répondre