Aller au contenu

Variable aléatoire discrète/Espérance, variance et écart-type

Leçons de niveau 12
Une page de Wikiversité, la communauté pédagogique libre.
Début de la boite de navigation du chapitre
Espérance, variance et écart-type
Icône de la faculté
Chapitre no 2
Leçon : Variable aléatoire discrète
Chap. préc. :Vocabulaire et notations
Chap. suiv. :Répétition d'expériences
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Variable aléatoire discrète : Espérance, variance et écart-type
Variable aléatoire discrète/Espérance, variance et écart-type
 », n'a pu être restituée correctement ci-dessus.

Espérance mathématique

[modifier | modifier le wikicode]

Soit une variable aléatoire. Supposons que la variable aléatoire prenne les valeurs .

On appelle espérance mathématique, l'expression :

ou

Concrètement, l'espérance mathématique est la valeur de la variable aléatoire que l'on peut espérer avoir en moyenne si l'on répète l'expérience un très grand nombre de fois.

Par exemple, si on reprend la variable aléatoire qui, à tout lancé de dé, associe la valeur qui apparaît sur le dé une fois celui-ci immobilisé. Nous avions vu au chapitre précédent que :

L'espérance mathématique sera alors :

Si on lance le dé un très grand nombre de fois et que l'on fait la moyenne des valeurs obtenues, on trouvera une valeur proche de 3,5.

Linéarité de l'espérance mathématique

[modifier | modifier le wikicode]

Soit une variable aléatoire définie sur un univers et soit et deux réel. Nous avons :

La variance est une grandeur permettant d'apprécier comment varie une variable aléatoire. En statistique la variance est la moyenne des écarts par rapport à la moyenne. Intuitivement, nous définirons donc la variance d'une variable aléatoire comme l'espérance mathématique du carré de l'écart par rapport à l'espérance mathématique de cette variable.

La variance de cette variable aléatoire sera définie par :


Ce qui donne dans le cas où est une variable aléatoire à valeur discrète:

ou

Linéarité de la variance

[modifier | modifier le wikicode]

Soit une variable aléatoire et et deux réels.


Soit une variable aléatoire. L'écart-type de , noté , est défini par :

Linéarité de l'écart-type

[modifier | modifier le wikicode]

Soit une variable aléatoire et et deux réels.