Leçons de niveau 12

Trigonométrie/Annexe/Les valeurs remarquables

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Les valeurs remarquables
Image logo représentative de la faculté
Annexe 1
Leçon : Trigonométrie

Cette annexe est de niveau 12.

Précédent :Sommaire
Suivant :Cercle trigonométrique et radians
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Annexe : Les valeurs remarquables
Trigonométrie/Annexe/Les valeurs remarquables
 », n'a pu être restituée correctement ci-dessus.




Le but de cette annexe est d’établir les valeurs du tableau déjà présenté au chapitre 5.

α
sin α
cos α
α
sin α
cos α

(Les personnes intéressées par un tableau plus complet peuvent consulter les Valeurs trigonométriques exactes en bibliothèque wikiversitaire)


Remarquons tout de suite qu’il suffit d’établir ces résultats pour les angles , , , et  ; par symétries d'axes et/ou sur le cercle trigonométrique, les autres données viennent trivialement. De plus, nous pouvons aussi réduire l'étude aux seuls cosinus de ces angles pour ensuite en déduire leur sinus par la symétrie d'axe .

cos(0) = 1, cos(π/2) = 0[modifier | modifier le wikicode]

  • Si , le point associé a pour abscisse et pour ordonnée sur le repère . De la définition du cosinus, nous pouvons affirmer que .
  • De façon analogue, on trouve aisément que .

cos(π/4) = 1/[modifier | modifier le wikicode]

Triangle pour un angle de 45°.

Si , le triangle est rectangle en . La somme des angles d’un triangle valant , l'angle vaut :

donc est aussi isocèle en .

Appliquons le théorème de Pythagore :

mais et donc :

et finalement :

.

cos(π/3) = 1/2[modifier | modifier le wikicode]

Triangle pour un angle de 60°.

Si , alors le triangle est isocèle en (). Les angles et sont égaux. Comme tout à l’heure, en sachant que la somme des angles d’un triangle vaut , nous pouvons écrire :

On a : . Le triangle est équilatéral, la médiane et la médiatrice issues de chaque sommet sont donc confondues. La médiatrice issue de coupe en son milieu qui se trouve être . Alors :

.

cos(π/6) = /2[modifier | modifier le wikicode]

Triangle pour un angle de 30°.

Si , le théorème de Pythagore nous dit :

.

Par la symétrie d'axe , comme alors et donc . Ainsi :

d'où :

.

Résumé[modifier | modifier le wikicode]

et les symétries d'axes , et ainsi que la rotation d'angle permettent d'en déduire toutes les valeurs du tableau.