Système d'équations linéaires/Résolution par combinaison
Introduction
[modifier | modifier le wikicode]La seconde méthode élémentaire de résolution des systèmes d'équations linéaires est la méthode par combinaisons. Elle consiste à manipuler les différentes lignes du système, en les ajoutant, les multipliant, les soustrayant, pour éliminer des termes et résoudre le système.
Exemple
[modifier | modifier le wikicode]Résolution détaillée
[modifier | modifier le wikicode]Le prix d'une baguette et le prix d'un croissant sont solutions du système linéaire
Au bout de 2 jours, Pierre aura acheté 6 baguettes, 10 croissants, et aura payé 14 €.
Au bout de 3 jours, Paul aura acheté 6 baguettes, 30 croissants, et aura payé 30 €.
Ce qui permet d'écrire le système
Il s'agit donc du système dans lequel on a multiplié la première ligne par 2 et la deuxième par 3.
Les deux amis ont donc acheté le même nombre de baguettes.
Prenons les achats de Pierre et soustrayons les achats de Paul. On a :
On remarque que les s'éliminent :
Et on obtient :
Ouf, le croissant coûte toujours 0,8 €.
Maintenant au bout de 2 jours, Pierre aura acheté 6 baguettes, 10 croissants, et aura payé 14 €.
Il a donc acheté autant de croissants que son ami en un seul jour.
Ce qui permet d'écrire le système
Il s'agit donc du système dans lequel on a multiplié la première ligne par 2 et laissé inchangée la deuxième.
Prenons les achats de Pierre et soustrayons les achats de Paul, on a :
On remarque que les s'éliminent :
Et on obtient :
Ouf, la baguette coûte toujours 1 €.
Résolution concise
[modifier | modifier le wikicode]Pour cela on numérote les différentes lignes du système d'équations : Puis on effectue l'opération , ce qui signifie qu'on multiplie la première équation par 2, la deuxième par 3 et qu'on soustrait les équations obtenues : Donc
On effectue ensuite l'opération : Donc
La solution du système est .
Cette méthode est plus compliquée à bien maîtriser, mais elle permet des calculs bien souvent plus rapides, et évite l'emploi de nombreuses fractions
Application de la méthode à des systèmes plus complexes
[modifier | modifier le wikicode]Ce qui suit généralise la méthode précédente, mais dépasse le niveau 9.
Il est plus simple d'introduire cette méthode par un exemple :
Nous reprenons l'exemple du chapitre précédent, pour bien montrer que cette méthode est différente de la méthode par substitution :
Nous soustrayons deux fois la première ligne à la seconde :
Soustrayons une fois la première ligne à la troisième :
Soustrayons deux fois la dernière ligne à la deuxième :
On trouve, dans la deuxième ligne :
Donc :
On trouve, dans la troisième ligne :
Donc :
La première ligne donne enfin :
Finalement, nous avons complètement résolu le système :
La méthode se résume ainsi :
On effectue les étapes suivantes :
- Étape 1 : On choisit une ligne, on la multiplie par un nombre et on soustrait / ajoute le produit à un autre ligne afin d'éliminer une inconnue..
- Étape 2 : On développe, réarrange, sépare les inconnues et les nombres.
- On recommence jusqu'à ce que le système soit résolu
Remarques
[modifier | modifier le wikicode]Comme précédemment, il faut bien faire attention aux signes et aux multiplications. De plus, il ne faut pas multiplier par zéro une expression. |
Si on aboutit à une tautologie comme 0 = 0, 3 = 3, c’est que le système n'admet pas une unique solution, ou bien qu'on a fait une erreur...
Si on aboutit à une contradiction comme 1 = 0, 3 = -3, c’est que le système n'admet pas de solution, ou bien qu'on a fait une erreur...
Il est prudent de toujours vérifier que la solution qu'on a trouvée est bien solution du système d'équations ! |
En général, cette méthode est moins trompeuse que la méthode par substitution. Elle est à la base de la méthode du pivot de Gauss, décrite dans une prochaine leçon. Néanmoins, une combinaison de la méthode par substitution et de la méthode par combinaison est souvent plus rapide qu'une seule des deux méthodes prise seule.