Leçons de niveau 14

Polynôme/Exercices/Polynômes à coefficients entiers

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Polynômes à coefficients entiers
Image logo représentative de la faculté
Exercices no4
Leçon : Polynôme

Exercices de niveau 14.

Exo préc. :Arithmétique des polynômes
Exo suiv. :Sommaire
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Polynômes à coefficients entiers
Polynôme/Exercices/Polynômes à coefficients entiers
 », n'a pu être restituée correctement ci-dessus.




Exercice 4-1[modifier | modifier le wikicode]

On note l’ensemble des polynômes unitaires de degré de dont les racines ont leur module inférieur ou égal à 1.

  1. Montrer que est fini.
  2. Soit un élément de . On note le polynôme . Montrer que .
  3. Montrer que les racines non nulles des éléments de sont des racines de l'unité.

Exercice 4-2[modifier | modifier le wikicode]

Soient n entiers deux à deux distincts () et . Dans chacun des cas suivants, montrer que dans , le polynôme est irréductible, c'est-à-dire que ses seuls diviseurs sont .

  1. avec n impair ;
  2.  ;
  3. .