Une page de Wikiversité, la communauté pédagogique libre.
En raison de limitations techniques, la typographie souhaitable du titre, «
Exercice : CompositionOpérations sur les fonctions/Exercices/Composition », n'a pu être restituée correctement ci-dessus.
On note
h
{\displaystyle h}
l'application définie sur
R
∖
{
0
,
1
}
{\displaystyle \mathbb {R} \setminus \{0,1\}}
par :
h
(
x
)
=
1
−
1
x
{\displaystyle h\left(x\right)=1-{\frac {1}{x}}}
. Vérifier que
h
{\displaystyle h}
est à valeurs dans
R
∖
{
0
,
1
}
{\displaystyle \mathbb {R} \setminus \{0,1\}}
et calculer
h
∘
h
(
x
)
{\displaystyle h\circ h\left(x\right)}
et
h
∘
h
∘
h
(
x
)
{\displaystyle h\circ h\circ h\left(x\right)}
.
Soit
f
:
R
∖
{
0
,
1
}
→
R
{\displaystyle f:\mathbb {R} \setminus \{0,1\}\to \mathbb {R} }
une application telle que (pour tout
x
∈
R
∖
{
0
,
1
}
{\displaystyle x\in \mathbb {R} \setminus \{0,1\}}
)
f
(
x
)
+
f
∘
h
(
x
)
=
a
x
+
b
{\displaystyle f\left(x\right)+f\circ h\left(x\right)=ax+b}
. Calculer, en fonction de
x
{\displaystyle x}
,
f
(
x
)
{\displaystyle f\left(x\right)}
,
h
(
x
)
{\displaystyle h\left(x\right)}
et
h
∘
h
(
x
)
{\displaystyle h\circ h\left(x\right)}
, les valeurs de
f
∘
h
(
x
)
{\displaystyle f\circ h\left(x\right)}
,
f
∘
h
∘
h
(
x
)
{\displaystyle f\circ h\circ h\left(x\right)}
et
f
∘
h
∘
h
∘
h
(
x
)
{\displaystyle f\circ h\circ h\circ h\left(x\right)}
.
En déduire que pour tout
x
∈
R
∖
{
0
,
1
}
{\displaystyle x\in \mathbb {R} \setminus \{0,1\}}
,
f
(
x
)
=
a
h
∘
h
(
x
)
−
a
h
(
x
)
+
a
x
+
b
2
{\displaystyle f\left(x\right)={\frac {ah\circ h\left(x\right)-ah\left(x\right)+ax+b}{2}}}
.
Vérifier que réciproquement, la fonction
g
:
R
∖
{
0
,
1
}
→
R
{\displaystyle g:\mathbb {R} \setminus \{0,1\}\to \mathbb {R} }
définie par
g
(
x
)
=
a
h
∘
h
(
x
)
−
a
h
(
x
)
+
a
x
+
b
2
{\displaystyle g\left(x\right)={\frac {ah\circ h\left(x\right)-ah\left(x\right)+ax+b}{2}}}
vérifie
g
(
x
)
+
g
∘
h
(
x
)
=
a
x
+
b
{\displaystyle g\left(x\right)+g\circ h\left(x\right)=ax+b}
.
Solution
Pour tout
x
∈
R
∖
{
0
,
1
}
{\displaystyle x\in \mathbb {R} \setminus \{0,1\}}
:
h
(
x
)
≠
0
{\displaystyle h\left(x\right)\neq 0}
car
1
x
≠
1
{\displaystyle {\frac {1}{x}}\neq 1}
car
x
≠
1
{\displaystyle x\neq 1}
,
h
(
x
)
≠
1
{\displaystyle h\left(x\right)\neq 1}
car
1
x
≠
0
{\displaystyle {\frac {1}{x}}\neq 0}
car
x
×
1
x
=
1
≠
0
{\displaystyle x\times {\frac {1}{x}}=1\neq 0}
,
h
∘
h
(
x
)
=
1
−
1
1
−
1
x
=
1
−
x
x
−
1
=
1
1
−
x
{\displaystyle h\circ h\left(x\right)=1-{\frac {1}{1-{\frac {1}{x}}}}=1-{\frac {x}{x-1}}={\frac {1}{1-x}}}
,
h
∘
h
∘
h
(
x
)
=
1
1
−
h
(
x
)
=
1
1
x
=
x
{\displaystyle h\circ h\circ h\left(x\right)={\frac {1}{1-h\left(x\right)}}={\frac {1}{\frac {1}{x}}}=x}
;
f
∘
h
(
x
)
=
a
x
+
b
−
f
(
x
)
{\displaystyle f\circ h\left(x\right)=ax+b-f\left(x\right)}
par hypothèse sur
f
{\displaystyle f}
,
f
∘
h
∘
h
(
x
)
=
a
h
(
x
)
+
b
−
f
∘
h
(
x
)
=
a
h
(
x
)
+
b
−
(
a
x
+
b
−
f
(
x
)
)
=
a
h
(
x
)
−
a
x
+
f
(
x
)
{\displaystyle f\circ h\circ h\left(x\right)=ah\left(x\right)+b-f\circ h\left(x\right)=ah\left(x\right)+b-\left(ax+b-f\left(x\right)\right)=ah\left(x\right)-ax+f\left(x\right)}
,
f
∘
h
∘
h
∘
h
(
x
)
=
a
h
∘
h
(
x
)
−
a
h
(
x
)
+
f
∘
h
(
x
)
=
a
h
∘
h
(
x
)
−
a
h
(
x
)
+
a
x
+
b
−
f
(
x
)
{\displaystyle f\circ h\circ h\circ h\left(x\right)=ah\circ h\left(x\right)-ah\left(x\right)+f\circ h\left(x\right)=ah\circ h\left(x\right)-ah\left(x\right)+ax+b-f\left(x\right)}
;
f
∘
h
∘
h
∘
h
(
x
)
=
f
(
x
)
{\displaystyle f\circ h\circ h\circ h\left(x\right)=f\left(x\right)}
d'après la question 1, d'où le résultat (d'après la fin de la question 2).
Si (pour tout
x
∈
R
∖
{
0
,
1
}
{\displaystyle x\in \mathbb {R} \setminus \{0,1\}}
)
g
(
x
)
=
a
h
∘
h
(
x
)
−
a
h
(
x
)
+
a
x
+
b
2
{\displaystyle g\left(x\right)={\frac {ah\circ h\left(x\right)-ah\left(x\right)+ax+b}{2}}}
alors
g
∘
h
(
x
)
=
a
x
−
a
h
∘
h
(
x
)
+
a
h
(
x
)
+
b
2
{\displaystyle g\circ h\left(x\right)={\frac {ax-ah\circ h\left(x\right)+ah\left(x\right)+b}{2}}}
donc
g
(
x
)
+
g
∘
h
(
x
)
=
a
x
+
b
{\displaystyle g\left(x\right)+g\circ h\left(x\right)=ax+b}
.