Aller au contenu

Ondes électromagnétiques guidées/Généralités

Leçons de niveau 15
Une page de Wikiversité, la communauté pédagogique libre.
Début de la boite de navigation du chapitre
Généralités
Icône de la faculté
Chapitre no 1
Leçon : Ondes électromagnétiques guidées
Retour auSommaire
Chap. suiv. :Guide rectangulaire

Exercices :

Fonctions génératrices en coordonnées cylindriques
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Ondes électromagnétiques guidées : Généralités
Ondes électromagnétiques guidées/Généralités
 », n'a pu être restituée correctement ci-dessus.
Un guide d'ondes pour radar

Soit un cylindre métallique creux supposé :

  • parfaitement conducteur
  • infini d'axe (Oz)
  • de section droite , courbe fermée quelconque

On cherche à propager à l'intérieur de une onde électromagnétique. sera par la suite appelé un guide d'ondes.

peut être un guide d'ondes :

  • simplement connexe : guide rectangulaire, circulaire… Le guide d'ondes en photo à droite est simplement connexe.
  • multiplement connexe : câble coaxial

Structure du champ électromagnétique propagé

[modifier | modifier le wikicode]

On cherche à propager une onde électromagnétique de pulsation imposée par une source à l'intérieur de suivant la direction , direction du guide d'ondes. Cette onde électromagnétique est, dans le cas général, composée :

  • d'un champ électrique , où :
    • est la composante transversale du champ électrique
    • l'amplitude suivant du champ électrique est représentée par
  • d'un champ magnétique , où :
    • est la composante transversale du champ magnétique
    • l'amplitude suivant du champ magnétique est représentée par

Nous allons montrer dans cette leçon que :

  • n'autorise la propagation que pour certaines valeurs de k quantifiées, appelées modes de propagation.
  • Cette quantification est la cause des conditions aux limites vérifiées par le champ électromagnétique.

Propriétés générales

[modifier | modifier le wikicode]

Champ propagé

[modifier | modifier le wikicode]

Pour étudier la structure du champ électromagnétique à l'intérieur de , il faut disposer de relations.

  • À partir de l'équation de propagation du champ électrique dans le vide , on peut obtenir une relation entre et et entre et .
Le laplacien vecteur est obtenu à partir du laplacien des coordonnées :
Par ailleurs,
Le laplacien de Ez est
Enfin, le laplacien vecteur de est :
Exploitons la relation de propagation :


Finalement:


  • L'équation de propagation du champ magnétique dans le vide étant identique, on peut obtenir par le même calcul la relation suivante entre et et entre et .


Fonctions génératrices

[modifier | modifier le wikicode]

Nous allons à présent montrer qu'on peut exprimer les coordonnées transversales des champs et à partir uniquement des composantes suivant la direction de propagation Ez et Bz. Ceci se fait en exploitant les deux équations de Maxwell aux rotationnels :



Nous ferons ici le calcul dans le cas des coordonnées cartésiennes. le cas d'autres systèmes de coordonnées sera laissé en exercice.

La première équation donne :

La deuxième équation donne :

Réorganisées, ces 4 équations nous donnent deux systèmes à 2 inconnues. Regroupons (1) et (4) ainsi que (2) et (3) :

Le déterminant de ces deux systèmes vaut .

On détermine donc les solutions suivantes :


Conditions aux limites

[modifier | modifier le wikicode]

La propagation d'un champ électromagnétique à l'intérieur du guide étant conditionnée par les conditions aux limites, on s'intéresse maintenant à ce qui se passe au niveau de la paroi de . On rappelle que les équations de passage du champ électromagnétique sont :

Ce qui nous intéresse plus précisément pour remonter aux conditions aux limites sur Ez et Bz est la propriété suivante :

  • Le champ électrique le long de est :
donc Ez est nul sur
  • Le champ magnétique le long de la paroi est :
La propriété implique .
Par ailleurs,
On sait aussi que
Or, et
Donc
Finalement, le long du guide, la dérivée normale de Bz vérifie
Début d’un théorème
Fin du théorème


Modes transverses

[modifier | modifier le wikicode]


  • Pour un mode TE,
  • Pour un mode TM,

On a ainsi les relations suivantes entre et la vitesse de phase dans le guide d'ondes :


  • La relation de dispersion est
  • La vitesse de phase est
  • La vitesse de groupe est

On peut remarquer qu'on retrouve les mêmes expressions que dans le cas de la progression de l'onde plane monochromatique progressive dans le vide. En particulier, la relation de dispersion est linéaire, ce qui rend le guide non dispersif pour un tel mode.

Dans l'hypothèse d'un guide simplement connexe, à l'intérieur du guide, on a donc un potentiel ψ uniforme, ce qui conduit à et .