Leçons de niveau 3

Nombre entier naturel/Soustraction

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Début de la boite de navigation du chapitre
Soustraction
Icône de la faculté
Chapitre no 3
Leçon : Nombre entier naturel
Chap. préc. :Addition
Chap. suiv. :Multiplication
fin de la boite de navigation du chapitre
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Nombre entier naturel : Soustraction
Nombre entier naturel/Soustraction
 », n'a pu être restituée correctement ci-dessus.

Nombre entier naturel : Soustraction[modifier | modifier le wikicode]

Les nombres entiers naturels peuvent aussi se soustraire entre eux. Le signe utilisé en mathématique est le " - "

On pourrait dire que, par exemple, dans une pièce il y a vingt personnes et qu'après un moment cinq d'entre elles vont sortir de la pièce.

Question: combien de gens restent dans la pièce ?

Calcul visuel:

Imaginons que chaque individu présent dans la pièce soit décrit avec le symbole " * ".

Nous allons maintenant représenter les vingt individus avec ce symbole:

* * * * * * * * * * * * * * * * * * * *

On va enlever cinq symboles:

* * * * * * * * * * * * * * * ('* * * * *')

Si on compte les symboles restants (ceux qui n'ont pas été entourés par les parenthèses), ils nous en restent quinze.

Alors on aura: 20 (individus) moins 5 (individus): il nous restent quinze individus.

En formule mathématique ça serait: 20 - 5 = 15.

Pour résoudre le problème sans devoir compter à la main chaque symbole, on préfèrera la notation de soustraction:

Première étape:

   20
 -  5 
 ____

On écrit le numéro 20 à la première ligne. C’est le numéro à qui on va enlever ensuite cinq unités. On ajoute 5 juste en dessous du chiffre 0 du numéro 20(le 5 doit être placé dans la colonne imaginaire des unités donc sous le 0) et on trace à la ligne suivante une ligne qui va séparer les deux numéros en question de la solution à trouver.

Comment tout cela ?

Tout d’abord il faut imaginer (dans ce cas) que le 20 est composé du chiffre 2 et du chiffre 0. Ce dernier c’est celui qui va nous intéresser le premier. En effet le raisonnement est: Combien d'unités me faut il pour arriver à 0 à partir de 5 ? La réponse est : -5 (lire moins cinq). Pas possible dans notre cas (voir le calcul visuel). Dans le cas des numéros entier naturels il va falloir compter en avant et pas à l'arrière, il va falloir donc imaginer que ce 0 fasse part de la représentation numérique du prochain numéro entier naturel. Donc le 10. La question est maintenant la suivante: combien d'unités manquent elles pour arriver à 10 ? Réponse: cinq (5). Ce dernier va être écrit au-dessus du 5(le numéro à soustraire), après la ligne de séparation sous la colonne des unités (voir note a) .

Et le 2 du chiffre 20 ?

En imagine là que sous le deux (2) il y ait un zéro (0). On a vu que les nombres naturels commencent par zéro, c’est comme si on écrivait 20 - 05, mais la le zéro n'a pas de signification car le cinq tel qu'on l'écrit veut être simplement un numéro et non pas: "Je suis, pardon, je ne suis aucun numéro pour ce qui concerne les décimaux (voir le 0 du 05) et je suis la cinquième unité de nombre naturels (voir le 5 du 05)"

Représentation graphique:

   20
 - 05
 ____
    5

Donc le même raisonnement on le fait pour le 0.

Combien d'unités faut il, à partir de 0 pour arriver à 2. Réponse: 2.

Panneau d’avertissement Si on met la réponse 2, après la ligne de séparation, sous la colonne des décimaux (qui correspond au 2 du 20), le chiffre résultant serait 25, ce qui devrait représenter le résultat finale, mais comme vous voyez ce n’est pas nôtre cas. Car si on veut que le résultat corresponde au vrai calcul (voir le calcul visuel) il faut qu'on établisse une nouvelle règle.

Dans nôtre cas si le 5 n'a pas un chiffre à rejoindre qui soit plus grand que lui (donc le 6,le 7, le 8 et le 9), on ajoute 1 au chiffre 0 (chiffre de la colonne des unités) et on calcule les unités qui manquent pour y arriver. Après il faut obligatoirement mettre sous la colonne des décimaux (donc sous le 2 du 20) le numéro 1[1].:

   20
 -  5
  ___
   15

Le prochain tour est le suivant: combien faut il pour arriver de 1 à 2 ? 1.

On écrit le numéro 1 sous la ligne à la gauche du 5, ce qui nous donne le numéro exacte 15.

Autres exemples:

24 - 5 = ?

19 - 3 = ?

11 - 2 = ? [1] Dans nôtre cas le 0 pour le vingt, le 5 et l'autre 5 sont les unités basilaires, celle qu'avec le 1, le 2, le 3, le 4, le 6, le 7, le 8 et le 9 servent à la représentation de n’importe quel numéro.

Note: Étant le 10 un numéro composé de deux numéros basilaires, le 0 et le 1, ce dernier nous rappelle que le calcul s'est passe au niveau des unités et non pas des décimaux. C’est la règle basilaire pour calculer en colonnes.

Notes[modifier | modifier le wikicode]

  1. 1,0 et 1,1 1