Aller au contenu

Géométrie symplectique/Variété symplectique

Leçons de niveau 18
Une page de Wikiversité, la communauté pédagogique libre.
Logo de la faculté
Cette page est une ébauche concernant les mathématiques. Avant de recréer une ressource du même type, essayez d'abord de compléter celle-ci ; si c'est impossible, remplacez son contenu par le vôtre. Si vous êtes l'auteur(e) de cette page et que vous souhaitez la continuer, retirez ce bandeau.
Début de la boite de navigation du chapitre
Variété symplectique
Icône de la faculté
Chapitre no 3
Leçon : Géométrie symplectique
Chap. préc. :Groupe symplectique
Chap. suiv. :Dynamique hamiltonienne
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Géométrie symplectique : Variété symplectique
Géométrie symplectique/Variété symplectique
 », n'a pu être restituée correctement ci-dessus.

Forme symplectique

[modifier | modifier le wikicode]


En un point x, on dispose donc d'une forme bilinéaire antisymétrique non dégénérée sur l'espace tangent . Cela implique en particulier que la dimension de M soit paire (voir chapitre 1). De plus, la puissance n-ième définit une forme volume, c'est-à-dire une forme de degré maximale de tout point non nulle. De fait, l’existence d'une forme symplectique implique que la variété soit orientable.

  • Espace vectoriel symplectique (voir le chapitre 1)
  • Tore symplectique

Sous-variétés

[modifier | modifier le wikicode]
  • Sous-variétés lagrangiennes

Argument de Moser

[modifier | modifier le wikicode]
Début d’un théorème
Fin du théorème


Théorème de Darboux

[modifier | modifier le wikicode]
Début d’un théorème
Fin du théorème


Théorème de Weinstein

[modifier | modifier le wikicode]