Leçons de niveau 15

Géométrie affine/Barycentres

Une page de Wikiversité.
Aller à la navigation Aller à la recherche
Début de la boite de navigation du chapitre
Barycentres
Icône de la faculté
Chapitre no 3
Leçon : Géométrie affine
Chap. préc. :Applications affines
Chap. suiv. :Sommaire
fin de la boite de navigation du chapitre
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Géométrie affine : Barycentres
Géométrie affine/Barycentres
 », n'a pu être restituée correctement ci-dessus.

Dans ce chapitre, est un espace affine de direction .

Définition[modifier | modifier le wikicode]

Alternativement, on peut définir le barycentre par une formule plus générale :

Remarques
  • La première proposition ci-dessus est le cas particulier .
  • Elle montre que le point donné par cette seconde caractérisation ne dépend en fait pas de .
  • Le barycentre ne change pas (et les formules sont plus simples) lorsqu'on remplace (de somme non nulle) par (de somme ).


Associativité[modifier | modifier le wikicode]

Coordonnées barycentriques[modifier | modifier le wikicode]

Applications affines et barycentres[modifier | modifier le wikicode]