Aller au contenu

Conservation de la masse et équation de continuité/Forme globale

Leçons de niveau 16
Une page de Wikiversité, la communauté pédagogique libre.
Début de la boite de navigation du chapitre
Forme globale
Icône de la faculté
Chapitre no 1
Leçon : Conservation de la masse et équation de continuité
Retour auSommaire
Chap. suiv. :Forme locale
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Conservation de la masse et équation de continuité : Forme globale
Conservation de la masse et équation de continuité/Forme globale
 », n'a pu être restituée correctement ci-dessus.

La forme globale, ou forme intégrale, de la conservation de la masse s'applique sur un volume de fluide, ce qui explique l’utilisation de l'outil intégrale. La masse de ce volume peut s'écrire :

.

Or le principe physique de la conservation de la masse au cours du temps implique :

.

Il vient donc:

.

Et d’après le théorème de transport de Reynolds, il vient finalement :

.


On peut montrer[1] ( grâce au théorème de Green-Ostrogradski ) que la conservation de la masse peut également s'exprimer :

.


  1. Voir les détails dans le chapitre Cinétique des fluides : Dérivée particulaire d'une intégrale de volume.