Une page de Wikiversité, la communauté pédagogique libre.
En raison de limitations techniques, la typographie souhaitable du titre, «
Exercice : Changement de variable moyenChangement de variable en calcul intégral/Exercices/Changement de variable moyen », n'a pu être restituée correctement ci-dessus.
Les changements de variable présentés dans cette page demandent de la réflexion mais ne devraient pas poser trop de problème.
Calculer :
∫
0
π
1
−
cos
x
3
sin
x
2
d
x
{\displaystyle \int _{0}^{\pi }{\frac {1-\cos {\frac {x}{3}}}{\sin {\frac {x}{2}}}}\,\mathrm {d} x}
.
Solution
Posons :
x
=
6
y
⇒
d
x
=
6
d
y
0
→
x
→
π
⇒
0
→
y
→
π
6
{\displaystyle x=6y\Rightarrow \mathrm {d} x=6\mathrm {d} y\qquad \qquad 0\to x\to \pi \Rightarrow 0\to y\to {\frac {\pi }{6}}}
.
On obtient alors :
∫
0
π
1
−
cos
x
3
sin
x
2
d
x
=
6
∫
0
π
6
1
−
cos
(
2
y
)
sin
(
3
y
)
d
y
=
6
∫
0
π
6
2
(
1
−
cos
2
y
)
(
4
cos
2
y
−
1
)
sin
y
d
y
=
3
∫
0
π
6
4
sin
y
4
cos
2
y
−
1
d
y
{\displaystyle \int _{0}^{\pi }{\frac {1-\cos {\frac {x}{3}}}{\sin {\frac {x}{2}}}}\,\mathrm {d} x=6\int _{0}^{\frac {\pi }{6}}{\frac {1-\cos(2y)}{\sin(3y)}}\,\mathrm {d} y=6\int _{0}^{\frac {\pi }{6}}{\frac {2(1-\cos ^{2}y)}{(4\cos ^{2}y-1)\sin y}}\,\mathrm {d} y=3\int _{0}^{\frac {\pi }{6}}{\frac {4\sin y}{4\cos ^{2}y-1}}\,\mathrm {d} y}
.
Posons alors :
z
=
cos
y
⇒
d
z
=
−
sin
y
d
y
0
→
x
→
π
6
⇒
1
→
y
→
3
2
{\displaystyle z=\cos y\Rightarrow \mathrm {d} z=-\sin y\,\mathrm {d} y\qquad \qquad 0\to x\to {\frac {\pi }{6}}\Rightarrow 1\to y\to {\frac {\sqrt {3}}{2}}}
.
Nous obtenons :
∫
0
π
6
4
sin
y
4
cos
2
y
−
1
d
y
=
∫
1
3
2
−
4
4
z
2
−
1
d
z
=
∫
1
3
2
−
4
(
2
z
+
1
)
(
2
z
−
1
)
d
z
=
∫
1
3
2
(
2
2
z
+
1
−
2
2
z
−
1
)
d
z
=
[
ln
(
2
z
+
1
)
−
ln
(
2
z
−
1
)
]
1
3
2
=
[
ln
2
z
+
1
2
z
−
1
]
1
3
2
=
ln
3
+
2
3
.
{\displaystyle {\begin{aligned}\int _{0}^{\frac {\pi }{6}}{\frac {4\sin y}{4\cos ^{2}y-1}}\,\mathrm {d} y&=\int _{1}^{\frac {\sqrt {3}}{2}}{\frac {-4}{4z^{2}-1}}\,\mathrm {d} z=\int _{1}^{\frac {\sqrt {3}}{2}}{\frac {-4}{(2z+1)(2z-1)}}\,\mathrm {d} z=\int _{1}^{\frac {\sqrt {3}}{2}}\left({\frac {2}{2z+1}}-{\frac {2}{2z-1}}\right)\,\mathrm {d} z\\&=\left[\ln(2z+1)-\ln(2z-1)\right]_{1}^{\frac {\sqrt {3}}{2}}=\left[\ln {\frac {2z+1}{2z-1}}\right]_{1}^{\frac {\sqrt {3}}{2}}=\ln {\frac {{\sqrt {3}}+2}{3}}.\end{aligned}}}
Nous pouvons conclure que :
∫
0
π
1
−
cos
x
3
sin
x
2
d
x
=
3
ln
3
+
2
3
{\displaystyle \int _{0}^{\pi }{\frac {1-\cos {\frac {x}{3}}}{\sin {\frac {x}{2}}}}\,\mathrm {d} x=3\ln {\frac {{\sqrt {3}}+2}{3}}}
.
Calculer :
∫
0
π
4
tan
x
1
+
sin
2
x
d
x
{\displaystyle \int _{0}^{\frac {\pi }{4}}{\frac {\tan x}{1+\sin ^{2}x}}\,\mathrm {d} x}
.
Solution
Nous sommes dans le « cas hybride » des règles de Bioche, où les trois changements de variable y = cos x , y = sin x et t = tan x sont fructueux mais où un changement plus intéressant est u = cos(2x ) .
Pour mettre en forme ce changement de variable, remarquons que
tan
x
1
+
sin
2
x
=
sin
x
cos
x
cos
2
x
(
1
+
sin
2
x
)
=
1
2
sin
(
2
x
)
1
2
(
1
+
cos
(
2
x
)
)
1
2
(
3
−
cos
(
2
x
)
)
{\displaystyle {\frac {\tan x}{1+\sin ^{2}x}}={\frac {\sin x\cos x}{\cos ^{2}x\left(1+\sin ^{2}x\right)}}={\frac {{\frac {1}{2}}\sin(2x)}{{\frac {1}{2}}\left(1+\cos(2x)\right){\frac {1}{2}}\left(3-\cos(2x)\right)}}}
.
En posant u = cos(2x ) , on obtient donc :
∫
0
π
4
tan
x
1
+
sin
2
x
d
x
=
∫
1
0
−
d
u
(
1
+
u
)
(
3
−
u
)
=
1
4
∫
0
1
(
1
1
+
u
+
1
3
−
u
)
d
u
=
1
4
[
ln
1
+
u
3
−
u
]
0
1
=
ln
3
4
.
{\displaystyle {\begin{aligned}\int _{0}^{\frac {\pi }{4}}{\frac {\tan x}{1+\sin ^{2}x}}\,\mathrm {d} x&=\int _{1}^{0}{\frac {-\mathrm {d} u}{(1+u)(3-u)}}={\frac {1}{4}}\int _{0}^{1}\left({\frac {1}{1+u}}+{\frac {1}{3-u}}\right)\,\mathrm {d} u\\&={\frac {1}{4}}\left[\ln {\frac {1+u}{3-u}}\right]_{0}^{1}={\frac {\ln 3}{4}}.\end{aligned}}}
Calculer :
a
)
∫
1
2
x
3
+
1
x
d
x
b
)
∫
1
+
∞
d
x
x
4
x
2
+
x
+
1
{\displaystyle a)\quad \int _{1}^{2}{\frac {\sqrt {x^{3}+1}}{x}}\,\mathrm {d} x\qquad \qquad \qquad b)\quad \int _{1}^{+\infty }{\frac {\mathrm {d} x}{x{\sqrt {4x^{2}+x+1}}}}}
.
Solution
a) En posant
y
=
x
3
+
1
{\displaystyle y={\sqrt {x^{3}+1}}}
, nous avons
y
2
=
x
3
+
1
{\displaystyle y^{2}=x^{3}+1}
donc
2
y
d
y
=
3
x
2
d
x
{\displaystyle 2y\,\mathrm {d} y=3x^{2}\,\mathrm {d} x}
et
∫
1
2
x
3
+
1
x
d
x
=
∫
1
2
x
3
+
1
x
3
x
2
d
x
=
1
3
∫
2
3
2
y
2
y
2
−
1
d
y
=
1
3
∫
2
3
(
2
−
1
y
+
1
+
1
y
−
1
)
d
y
=
1
3
[
2
y
−
ln
(
y
+
1
)
+
ln
(
y
−
1
)
]
2
3
=
1
3
[
2
y
+
ln
y
−
1
y
+
1
]
2
3
=
6
−
2
2
−
ln
(
6
−
4
2
)
3
.
{\displaystyle {\begin{aligned}\int _{1}^{2}{\frac {\sqrt {x^{3}+1}}{x}}\,\mathrm {d} x&=\int _{1}^{2}{\frac {\sqrt {x^{3}+1}}{x^{3}}}\,x^{2}\mathrm {d} x={\frac {1}{3}}\int _{\sqrt {2}}^{3}{\frac {2y^{2}}{y^{2}-1}}\,\mathrm {d} y\\&={\frac {1}{3}}\int _{\sqrt {2}}^{3}\left(2-{\frac {1}{y+1}}+{\frac {1}{y-1}}\right)\,\mathrm {d} y\\&={\frac {1}{3}}\left[2y-\ln {(y+1)}+\ln {(y-1)}\right]_{\sqrt {2}}^{3}\\&={\frac {1}{3}}\left[2y+\ln {\frac {y-1}{y+1}}\right]_{\sqrt {2}}^{3}\\&={\frac {6-2{\sqrt {2}}-\ln {(6-4{\sqrt {2}})}}{3}}.\end{aligned}}}
b)
4
x
2
+
x
+
1
=
(
2
x
+
1
4
)
2
+
15
16
=
15
16
(
y
2
+
1
)
{\displaystyle 4x^{2}+x+1=\left(2x+{\frac {1}{4}}\right)^{2}+{\frac {15}{16}}={\frac {15}{16}}\left(y^{2}+1\right)}
avec
y
=
4
15
(
2
x
+
1
4
)
=
8
x
+
1
15
{\displaystyle y={\frac {4}{\sqrt {15}}}\left(2x+{\frac {1}{4}}\right)={\frac {8x+1}{\sqrt {15}}}}
donc posons
tan
θ
=
8
x
+
1
15
,
d
x
4
x
2
+
x
+
1
=
d
θ
2
cos
θ
{\displaystyle \tan \theta ={\frac {8x+1}{\sqrt {15}}},\quad {\frac {\mathrm {d} x}{\sqrt {4x^{2}+x+1}}}={\frac {\mathrm {d} \theta }{2\cos \theta }}}
.
∫
1
+
∞
d
x
x
4
x
2
+
x
+
1
=
4
∫
arctan
(
3
3
/
5
)
π
2
d
θ
15
sin
θ
−
cos
θ
{\displaystyle \int _{1}^{+\infty }{\frac {\mathrm {d} x}{x{\sqrt {4x^{2}+x+1}}}}=4\int _{\arctan \left(3{\sqrt {3/5}}\right)}^{\frac {\pi }{2}}{\frac {\mathrm {d} \theta }{{\sqrt {15}}\sin \theta -\cos \theta }}}
.
Posons enfin
t
=
tan
θ
2
,
cos
θ
=
1
−
t
2
1
+
t
2
,
sin
θ
=
2
t
1
+
t
2
,
d
θ
=
2
d
t
1
+
t
2
,
T
=
tan
arctan
(
3
3
/
5
)
2
=
4
2
−
5
3
3
{\displaystyle t=\tan {\frac {\theta }{2}},\quad \cos \theta ={\frac {1-t^{2}}{1+t^{2}}},\quad \sin \theta ={\frac {2t}{1+t^{2}}},\quad \mathrm {d} \theta ={\frac {2\mathrm {d} t}{1+t^{2}}},\quad T=\tan {\frac {\arctan \left(3{\sqrt {3/5}}\right)}{2}}={\frac {4{\sqrt {2}}-{\sqrt {5}}}{3{\sqrt {3}}}}}
.
4
∫
arctan
(
3
3
/
5
)
π
2
d
θ
15
sin
θ
−
cos
θ
=
8
∫
T
1
d
t
t
2
+
2
15
t
−
1
=
∫
T
1
(
1
t
+
15
−
4
−
1
t
+
15
+
4
)
d
t
=
ln
(
15
−
3
)
(
T
+
15
+
4
)
(
15
+
5
)
(
T
+
15
−
4
)
{\displaystyle 4\int _{\arctan \left(3{\sqrt {3/5}}\right)}^{\frac {\pi }{2}}{\frac {\mathrm {d} \theta }{{\sqrt {15}}\sin \theta -\cos \theta }}=8\int _{T}^{1}{\frac {\mathrm {d} t}{t^{2}+2{\sqrt {15}}t-1}}=\int _{T}^{1}\left({\frac {1}{t+{\sqrt {15}}-4}}-{\frac {1}{t+{\sqrt {15}}+4}}\right)\,\mathrm {d} t=\ln {\frac {\left({\sqrt {15}}-3\right)\left(T+{\sqrt {15}}+4\right)}{\left({\sqrt {15}}+5\right)\left(T+{\sqrt {15}}-4\right)}}}
.
Finalement,
∫
1
+
∞
d
x
x
4
x
2
+
x
+
1
=
ln
(
15
−
3
)
(
2
+
2
5
+
3
3
)
(
15
+
5
)
(
2
+
2
5
−
3
3
)
≈
0,457
{\displaystyle \int _{1}^{+\infty }{\frac {\mathrm {d} x}{x{\sqrt {4x^{2}+x+1}}}}=\ln {\frac {\left({\sqrt {15}}-3\right)\left({\sqrt {2}}+2{\sqrt {5}}+3{\sqrt {3}}\right)}{\left({\sqrt {15}}+5\right)\left({\sqrt {2}}+2{\sqrt {5}}-3{\sqrt {3}}\right)}}\approx 0{,}457}
.
Calculer :
a
)
∫
0
π
2
cos
x
1
+
cos
2
x
d
x
b
)
∫
0
π
2
sin
x
1
+
sin
2
x
d
x
{\displaystyle a)\quad \int _{0}^{\frac {\pi }{2}}{\frac {\cos x}{\sqrt {1+\cos 2x}}}\ \mathrm {d} x\qquad \qquad \qquad b)\quad \int _{0}^{\frac {\pi }{2}}{\frac {\sin x}{\sqrt {1+\sin 2x}}}\,\mathrm {d} x}
.
Calculer :
a
)
∫
1
2
x
x
−
1
x
+
1
d
x
b
)
∫
−
1
0
arctan
x
+
1
x
+
3
d
x
{\displaystyle a)\quad \int _{1}^{2}x{\sqrt {\frac {x-1}{x+1}}}\,\mathrm {d} x\qquad \qquad \qquad b)\quad \int _{-1}^{0}\arctan {\sqrt {\frac {x+1}{x+3}}}\,\mathrm {d} x}
.
Solution
a) Posons :
y
=
x
−
1
x
+
1
⇔
x
=
1
+
y
2
1
−
y
2
⇒
d
x
=
4
y
(
y
2
−
1
)
2
d
y
1
→
x
→
2
⇒
0
→
y
→
1
3
{\displaystyle y={\sqrt {\frac {x-1}{x+1}}}\Leftrightarrow x={\frac {1+y^{2}}{1-y^{2}}}\Rightarrow \mathrm {d} x={\frac {4y}{(y^{2}-1)^{2}}}\,\mathrm {d} y\qquad \qquad 1\to x\to 2\Rightarrow 0\to y\to {\frac {1}{\sqrt {3}}}}
.
On a donc :
∫
1
2
x
x
−
1
x
+
1
d
x
=
∫
0
1
3
y
1
+
y
2
1
−
y
2
4
y
(
y
2
−
1
)
2
d
y
=
∫
0
1
3
4
y
2
(
1
+
y
2
)
(
1
−
y
2
)
3
d
y
=
∫
0
1
3
(
1
2
(
y
+
1
)
−
3
2
(
y
+
1
)
2
+
1
(
y
+
1
)
3
−
1
2
(
y
−
1
)
−
3
2
(
y
−
1
)
2
−
1
(
y
−
1
)
3
)
d
y
=
[
1
2
ln
1
+
y
1
−
y
+
3
y
+
2
2
(
y
+
1
)
2
+
3
y
−
2
2
(
y
−
1
)
2
]
0
1
3
=
ln
(
2
+
3
)
2
.
{\displaystyle {\begin{aligned}\int _{1}^{2}x{\sqrt {\frac {x-1}{x+1}}}\,\mathrm {d} x&=\int _{0}^{\frac {1}{\sqrt {3}}}y{\frac {1+y^{2}}{1-y^{2}}}{\frac {4y}{(y^{2}-1)^{2}}}\,\mathrm {d} y=\int _{0}^{\frac {1}{\sqrt {3}}}{\frac {4y^{2}(1+y^{2})}{(1-y^{2})^{3}}}\,\mathrm {d} y\\&=\int _{0}^{\frac {1}{\sqrt {3}}}\left({\frac {1}{2(y+1)}}-{\frac {3}{2(y+1)^{2}}}+{\frac {1}{(y+1)^{3}}}-{\frac {1}{2(y-1)}}-{\frac {3}{2(y-1)^{2}}}-{\frac {1}{(y-1)^{3}}}\right)\,\mathrm {d} y\\&=\left[{\frac {1}{2}}\ln {\frac {1+y}{1-y}}+{\frac {3y+2}{2(y+1)^{2}}}+{\frac {3y-2}{2(y-1)^{2}}}\right]_{0}^{\frac {1}{\sqrt {3}}}={\frac {\ln(2+{\sqrt {3}})}{2}}.\end{aligned}}}
b) Posons :
y
=
x
+
1
x
+
3
⇔
x
=
1
−
3
y
2
y
2
−
1
⇒
d
x
=
4
y
(
y
2
−
1
)
2
d
y
−
1
→
x
→
0
⇒
0
→
y
→
1
3
{\displaystyle y={\sqrt {\frac {x+1}{x+3}}}\Leftrightarrow x={\frac {1-3y^{2}}{y^{2}-1}}\Rightarrow \mathrm {d} x={\frac {4y}{(y^{2}-1)^{2}}}\mathrm {d} y\qquad \qquad -1\to x\to 0\Rightarrow 0\to y\to {\frac {1}{\sqrt {3}}}}
.
On a donc :
∫
−
1
0
arctan
x
+
1
x
+
3
d
x
=
∫
0
1
3
4
y
(
y
2
−
1
)
2
arctan
y
d
y
=
[
−
2
y
2
−
1
arctan
y
]
0
1
3
+
2
∫
0
1
3
1
(
y
2
−
1
)
(
y
2
+
1
)
d
y
=
[
2
1
−
y
2
arctan
y
]
0
1
3
+
∫
0
1
3
(
1
2
(
y
−
1
)
−
1
2
(
y
+
1
)
−
1
y
2
+
1
)
d
y
=
[
1
+
y
2
1
−
y
2
arctan
y
+
1
2
ln
1
−
y
1
+
y
]
0
1
3
=
4
/
3
2
/
3
π
6
+
1
2
ln
3
−
1
3
+
1
=
π
3
+
ln
(
2
−
3
)
2
.
{\displaystyle {\begin{aligned}\int _{-1}^{0}\arctan {\sqrt {\frac {x+1}{x+3}}}\,\mathrm {d} x&=\int _{0}^{\frac {1}{\sqrt {3}}}{\frac {4y}{(y^{2}-1)^{2}}}\arctan y\,\mathrm {d} y\\&=\left[{\frac {-2}{y^{2}-1}}\arctan y\right]_{0}^{\frac {1}{\sqrt {3}}}+2\int _{0}^{\frac {1}{\sqrt {3}}}{\frac {1}{(y^{2}-1)(y^{2}+1)}}\,\mathrm {d} y\\&=\left[{\frac {2}{1-y^{2}}}\arctan y\right]_{0}^{\frac {1}{\sqrt {3}}}+\int _{0}^{\frac {1}{\sqrt {3}}}\left({\frac {1}{2(y-1)}}-{\frac {1}{2(y+1)}}-{\frac {1}{y^{2}+1}}\right)\,\mathrm {d} y\\&=\left[{\frac {1+y^{2}}{1-y^{2}}}\arctan y+{\frac {1}{2}}\ln {\frac {1-y}{1+y}}\right]_{0}^{\frac {1}{\sqrt {3}}}\\&={\frac {4/3}{2/3}}\,{\frac {\pi }{6}}+{\frac {1}{2}}\ln {\frac {{\sqrt {3}}-1}{{\sqrt {3}}+1}}\\&={\frac {\pi }{3}}+{\frac {\ln(2-{\sqrt {3}})}{2}}.\end{aligned}}}
Soit la fonction
u
(
x
)
=
x
+
x
2
+
x
+
1
{\displaystyle u(x)=x+{\sqrt {x^{2}+x+1}}}
. Montrer que
u
{\displaystyle u}
est une bijection de
[
0
,
1
]
{\displaystyle [0,1]}
sur un intervalle
[
a
,
b
]
{\displaystyle [a,b]}
que l'on précisera.
Faire la division euclidienne de
t
4
+
2
t
3
+
3
t
2
+
2
t
+
1
{\displaystyle t^{4}+2t^{3}+3t^{2}+2t+1}
par
t
2
+
t
+
1
{\displaystyle t^{2}+t+1}
.
Montrer que
x
=
t
2
−
1
2
t
+
1
,
t
≥
1
{\displaystyle x={\frac {t^{2}-1}{2t+1}},\;t\geq 1}
est équivalent à
t
=
x
+
x
2
+
x
+
1
,
x
≥
0
{\displaystyle t=x+{\sqrt {x^{2}+x+1}},\;x\geq 0}
.
Faire le changement de variable
u
(
x
)
=
t
{\displaystyle u(x)=t}
dans l'intégrale
I
:=
∫
0
1
d
x
x
+
x
2
+
x
+
1
{\displaystyle I:=\int _{0}^{1}{\frac {\mathrm {d} x}{x+{\sqrt {x^{2}+x+1}}}}}
. Montrer que
I
=
∫
a
b
P
(
t
)
Q
(
t
)
d
t
{\displaystyle I=\int _{a}^{b}{\frac {P(t)}{Q(t)}}\,\mathrm {d} t}
, pour une fraction rationnelle
P
Q
{\displaystyle {\frac {P}{Q}}}
que l'on précisera.
Faire la décomposition en éléments simples dans
R
{\displaystyle \mathbb {R} }
de la fraction rationnelle de la question précédente et calculer
I
{\displaystyle I}
.
Solution
∀
x
≥
0
u
′
(
x
)
≥
1
{\displaystyle \forall x\geq 0\quad u'(x)\geq 1}
donc
u
{\displaystyle u}
est continue strictement croissante (et donc bijective) de
[
0
,
1
]
{\displaystyle [0,1]}
sur
[
a
,
b
]
{\displaystyle [a,b]}
, avec
a
=
u
(
0
)
=
1
{\displaystyle a=u(0)=1}
et
b
=
u
(
1
)
=
1
+
3
{\displaystyle b=u(1)=1+{\sqrt {3}}}
.
t
4
+
2
t
3
+
3
t
2
+
2
t
+
1
=
(
t
2
+
t
+
1
)
2
{\displaystyle t^{4}+2t^{3}+3t^{2}+2t+1=(t^{2}+t+1)^{2}}
.
u
{\displaystyle u}
est (continue et strictement croissante donc) bijective de
[
0
,
+
∞
[
{\displaystyle \left[0,+\infty \right[}
sur
[
1
,
+
∞
[
{\displaystyle \left[1,+\infty \right[}
, et si
x
=
t
2
−
1
2
t
+
1
,
t
≥
1
{\displaystyle x={\frac {t^{2}-1}{2t+1}},\;t\geq 1}
alors
x
≥
0
{\displaystyle x\geq 0}
et
u
(
x
)
=
t
2
−
1
+
(
t
2
−
1
)
2
+
(
t
2
−
1
)
(
2
t
+
1
)
+
(
2
t
+
1
)
2
2
t
+
1
=
t
2
−
1
+
t
4
+
3
t
2
+
2
t
3
+
2
t
+
1
2
t
+
1
=
t
2
−
1
+
t
2
+
t
+
1
2
t
+
1
=
t
{\displaystyle u(x)={\frac {t^{2}-1+{\sqrt {(t^{2}-1)^{2}+(t^{2}-1)(2t+1)+(2t+1)^{2}}}}{2t+1}}={\frac {t^{2}-1+{\sqrt {t^{4}+3t^{2}+2t^{3}+2t+1}}}{2t+1}}={\frac {t^{2}-1+t^{2}+t+1}{2t+1}}=t}
.
I
=
∫
a
b
1
t
(
t
2
−
1
2
t
+
1
)
′
d
t
=
∫
a
b
2
(
t
2
+
t
+
1
)
t
(
2
t
+
1
)
2
d
t
{\displaystyle I=\int _{a}^{b}{\frac {1}{t}}\left({\frac {t^{2}-1}{2t+1}}\right)'\,\mathrm {d} t=\int _{a}^{b}{\frac {2(t^{2}+t+1)}{t(2t+1)^{2}}}\,\mathrm {d} t}
.
2
(
t
2
+
t
+
1
)
t
(
2
t
+
1
)
2
=
2
t
−
3
2
t
+
1
−
3
(
2
t
+
1
)
2
{\displaystyle {\frac {2(t^{2}+t+1)}{t(2t+1)^{2}}}={\frac {2}{t}}-{\frac {3}{2t+1}}-{\frac {3}{(2t+1)^{2}}}}
donc
I
=
2
ln
(
1
+
3
)
−
3
2
ln
3
+
2
3
3
+
3
2
(
1
3
+
2
3
−
1
3
)
{\displaystyle I=2\ln(1+{\sqrt {3}})-{\frac {3}{2}}\ln {\frac {3+2{\sqrt {3}}}{3}}+{\frac {3}{2}}\left({\frac {1}{3+2{\sqrt {3}}}}-{\frac {1}{3}}\right)}
.