Leçons de niveau 11

Vecteurs et repérage/Base et repère du plan

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Début de la boite de navigation du chapitre
Base et repère du plan
Icône de la faculté
Chapitre no 1
Leçon : Vecteurs et repérage
Retour auSommaire
Chap. suiv. :Condition de colinéarité
fin de la boite de navigation du chapitre
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Cours de mathématiques de seconde : Base et repère du plan
Vecteurs et repérage/Base et repère du plan
 », n'a pu être restituée correctement ci-dessus.

Base de vecteurs[modifier | modifier le wikicode]

Sur le dessin suivant, on a représenté deux vecteurs et non colinéaires.

Définition base vecteurs1.svg

Maintenant, plaçons un vecteur sur ce même dessin.

Définition base vecteurs2.svg

Est-il possible d'exprimer le vecteur en fonction des vecteurs et  ?

Pour s'aider, on va construire un quadrillage à partir des vecteurs et  : les vecteurs et forment les deux côtés d'un parallélogramme.

Définition base vecteurs3.svg

On va maintenant mettre côte-à-côte plusieurs parallélogrammes de même dimension.

Définition base vecteurs4.svg

D'après les propriétés du parallélogramme, on obtient ainsi un quadrillage dont les lignes sont parallèles et régulièrement espacées.

On va alors tenter de relier le point A au point B en n'utilisant que les lignes du quadrillage.

Définition base vecteurs5.svg

On obtient ainsi :

Mais il y a bien d'autres possibilités de relier A à B. Que se passe-t-il si on choisit un autre chemin ?

Observons deux autres chemins :

Définition base vecteurs6.svg

On constate

  • pour le chemin vert :
    ​ Et après simplification
  • pour le chemin rouge :
    ​ Et après simplification

Dans chacun des cas étudiés on a toujours .

Si l'on répète l'opération pour différents vecteurs, on peut exprimer n’importe quel vecteur en fonction de et  :

Définition base vecteurs7.svg
  • donc les coordonnées de sont .
  • donc les coordonnées de sont .
  • donc les coordonnées de sont .



Repère du plan[modifier | modifier le wikicode]

Reprenons le graphique précédent :

Définition repère1.svg

Comment décrire la position du point M ?

Pour déterminer un chemin pour rejoindre le point M, il est indispensable de choisir un point de départ. Ce point O sur le graphique suivant est appelé origine du repère. Il est alors possible de décrire le vecteur en fonction des vecteurs et .