Vecteurs et repérage/Base et repère du plan
Base de vecteurs
[modifier | modifier le wikicode]Sur le dessin suivant, on a représenté deux vecteurs et non colinéaires.
Maintenant, plaçons un vecteur sur ce même dessin.
Est-il possible d'exprimer le vecteur en fonction des vecteurs et ?
Pour s'aider, on va construire un quadrillage à partir des vecteurs et : les vecteurs et forment les deux côtés d'un parallélogramme.
On va maintenant mettre côte-à-côte plusieurs parallélogrammes de même dimension.
D'après les propriétés du parallélogramme, on obtient ainsi un quadrillage dont les lignes sont parallèles et régulièrement espacées.
On va alors tenter de relier le point A au point B en n'utilisant que les lignes du quadrillage.
On obtient ainsi :
Mais il y a bien d'autres possibilités de relier A à B. Que se passe-t-il si on choisit un autre chemin ?
Observons deux autres chemins :
On constate
- pour le chemin vert :
Et après simplification - pour le chemin rouge :
Et après simplification
Dans chacun des cas étudiés on a toujours .
Si l'on répète l'opération pour différents vecteurs, on peut exprimer n’importe quel vecteur en fonction de et :
- donc les coordonnées de sont .
- donc les coordonnées de sont .
- donc les coordonnées de sont .
et étant deux vecteurs non colinéaires, on dit que le couple de forme une base de vecteurs du plan.
étant une base de vecteur du plan, pour tout vecteur , il existe deux nombres réels et uniques tels que :
Le couple est appelé coordonnées du vecteur dans la base .
- est l'abscisse du vecteur
- est appelé ordonnée du vecteur
Repère du plan
[modifier | modifier le wikicode]Reprenons le graphique précédent :
Comment décrire la position du point M ?
Pour déterminer un chemin pour rejoindre le point M, il est indispensable de choisir un point de départ. Ce point O sur le graphique suivant est appelé origine du repère. Il est alors possible de décrire le vecteur en fonction des vecteurs et .
On appelle repère du plan tout triplet où :
- O est un point du plan appelé origine du repère ;
- est une base de vecteurs du plan.
Les coordonnées d'un point M sont les coordonnées du vecteur dans la base