Leçons de niveau 15

Relativité restreinte/Expérience de Michelson-Morley

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Début de la boite de navigation du chapitre
Expérience de Michelson-Morley
Icône de la faculté
Chapitre no 1
Leçon : Relativité restreinte
Retour auSommaire
Chap. suiv. :Démonstration de la transformation de Lorentz
fin de la boite de navigation du chapitre
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Relativité restreinte : Expérience de Michelson-Morley
Relativité restreinte/Expérience de Michelson-Morley
 », n'a pu être restituée correctement ci-dessus.

Maxwell a inventé l’éther qui devait être le support matériel pour la propagation des ondes électromagnétiques (lumière), et il a imaginé une expérience pour mesurer la vitesse absolue (par rapport au référentiel constitué par l'éther) du système solaire grâce aux éclipses d’Io. Malheureusement, la précision était insuffisante. Michelson et Morley ont monté ensuite une expérience qui permettait de mesurer le vent d'éther avec une précision de quelques km/s ; puis ils ont perfectionné le système pour atteindre une précision de 400 m/s. L'interféromètre était pointé vers la constellation de la Vierge. La mesure se faisait par comparaison des franges d'interférence obtenues en tournant l'appareil de 90°, de sorte qu’il a pu comparer l'influence de la vitesse de l'éther dans les directions parallèle et perpendiculaire au vent d'éther. On n'obtient pas de comparaison directe, ni avec l'immobilité puisque le mouvement de l'éther ne peut être arrêté, ni en aller simple puisque le principe de l'interféromètre est de faire interférer le rayon lumineux réfléchi par les miroirs avec lui-même.

Le résultat de l'expérience a été négatif : la lumière se comporte comme s'il n'y avait pas de vent d'éther. Le calcul du déplacement des franges dans l'hypothèse de l'addition galiléenne des vitesses est donc faux. Pour le corriger, on a complété la relativité galiléenne par les hypothèses de la dilatation du temps et de la contraction des longueurs. On peut aussi utiliser la transformation de Lorentz, conséquence des équations de Maxwell, qu'Einstein a redémontrée à partir de considérations simples sans rapport avec l'électrodynamique en imaginant, après d'Alembert, que le temps était une quatrième dimension, donnant, par exemple, un espace-temps euclidien à quatre dimensions, x,y,z, w=ict.