Aller au contenu

Recherche:Techniques de régressions au plus près/Définition de la régression au plus près

Une page de Wikiversité, la communauté pédagogique libre.
Début de la boite de navigation du chapitre
Définition de la régression au plus près
Icône de la faculté
Chapitre no 2
Recherche : Techniques de régressions au plus près
Chap. préc. :Première étape de l'approche
Chap. suiv. :Fonctions régressives Fi communes de base
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Techniques de régressions au plus près : Définition de la régression au plus près
Techniques de régressions au plus près/Définition de la régression au plus près
 », n'a pu être restituée correctement ci-dessus.


Définition de la régression au plus près

[modifier | modifier le wikicode]
On appellera régression au plus près toute forme suivante correspondant aux conditions suivantes :
AVEC
Échec de l’analyse (fonction inconnue « \begin{cases} »): {\displaystyle \begin{cases} i>=1 \\ \exists!un/i/au/moins/tel/que : \epsilon(xr_1) \neq 0 \\ \epsilon(xr_1)<= (/ou/non)/à/limite/l_i/initiale/maximale \\ F_{regi} / de/mêmes/natures/ou/non \\ SDMC <= (/ou/non)/à/limite/l/initiale/maximale \end{cases} }
On appellera régression idéale LA régression de type ci-dessus telle qu'en plus , E comme écart, S comme somme, D comme des, C comme carrés.
On appellera régressions monofonctionnelles les régression telles que tous les soient de même nature
Exemple 1:
Exemple 2:
On appellera ordre global le nombre de fonctions de même nature ou non ; ordre partiel le nombre de fonctions entrant dans la régression de même nature ( dans l'exemple : ordre 3 global et 3 partiel en sinus )
Pour exprimer que la Somme Des Moindres Carrés est minimale, on écrira que toutes ses dérivées partielles par rapport aux écarts sont nulles .
La forme générale peut aussi se mettre sous la forme plus facile à manipuler et faisant appel à des calculs plus simples, moins nombreux et plus logiques :

Deuxième étape de l'approche

[modifier | modifier le wikicode]
Rechercher la meilleure fonction régressive F1 telle que :
Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « http://localhost:6011/fr.wikiversity.org/v1/ » :): {\displaystyle \begin{cases} y_{reg}(xr) = k + k_1F_1(xr)+ \epsilon_1{(xr)} \\ SDMC_1 = \Sigma \epsilon_1^2(xr_{1i}) /minimum/dans/la/liste/des/F1/testées \\ SDE = \Sigma \epsilon(xr_{i}) = 0 /éventuellement/et/si/possible \end{cases} }
Réitérer l'opération sur
Échec de l’analyse (fonction inconnue « \begin{cases} »): {\displaystyle \begin{cases} \epsilon_1{(xr)} = y_{reg1}(xr) = k_2F_2(xr)+ \epsilon_2{(xr)} \\ SDMC_2 = \Sigma \epsilon_2^2(xr_{2i}) /minimum/dans/la/liste/des/F2/testées \\ SDE = \Sigma \epsilon(xr_{i}) = 0 /éventuellement/et/si/possible \end{cases} }
Arrêter quand on le désire, par exemple après avoir atteint une limite pour SDMC.