Une page de Wikiversité, la communauté pédagogique libre.
En raison de limitations techniques, la typographie souhaitable du titre, «
Exercice : Quantité conjuguéeRacine carrée/Exercices/Quantité conjuguée », n'a pu être restituée correctement ci-dessus.
Simplifier les expressions suivantes :
(
5
+
2
7
)
(
5
−
2
7
)
{\displaystyle \left(5+2{\sqrt {7}}\right)\left(5-2{\sqrt {7}}\right)}
;
2
+
3
2
−
3
{\displaystyle {\sqrt {2+{\sqrt {3}}}}\,{\sqrt {2-{\sqrt {3}}}}}
.
Solution
(
5
+
2
7
)
(
5
−
2
7
)
=
5
2
−
(
2
7
)
2
=
25
−
4
×
7
=
−
3
{\displaystyle \left(5+2{\sqrt {7}}\right)\left(5-2{\sqrt {7}}\right)=5^{2}-\left(2{\sqrt {7}}\right)^{2}=25-4\times 7=-3}
;
2
+
3
2
−
3
=
(
2
+
3
)
(
2
−
3
)
=
2
2
−
3
2
=
1
=
1
{\displaystyle {\sqrt {2+{\sqrt {3}}}}\,{\sqrt {2-{\sqrt {3}}}}={\sqrt {\left(2+{\sqrt {3}}\right)\left(2-{\sqrt {3}}\right)}}={\sqrt {2^{2}-{\sqrt {3}}^{2}}}={\sqrt {1}}=1}
.
Rendre rationnels les dénominateurs des fractions suivantes :
1
8
{\displaystyle {\frac {1}{\sqrt {8}}}}
;
1
2
−
1
{\displaystyle {\frac {1}{{\sqrt {2}}-1}}}
;
3
−
2
3
+
2
{\displaystyle {\frac {{\sqrt {3}}-{\sqrt {2}}}{{\sqrt {3}}+{\sqrt {2}}}}}
;
3
+
5
5
−
1
{\displaystyle {\frac {3+{\sqrt {5}}}{{\sqrt {5}}-1}}}
.
Effectuer les sommes suivantes :
2
+
3
3
−
2
+
2
−
3
2
+
3
{\displaystyle {\frac {{\sqrt {2}}+{\sqrt {3}}}{{\sqrt {3}}-{\sqrt {2}}}}+{\frac {{\sqrt {2}}-{\sqrt {3}}}{{\sqrt {2}}+{\sqrt {3}}}}}
;
1
3
+
6
+
1
3
−
6
{\displaystyle {\frac {1}{{\sqrt {3}}+6}}+{\frac {1}{{\sqrt {3}}-6}}}
.
Solution
2
+
3
3
−
2
+
2
−
3
2
+
3
=
(
3
+
2
)
2
−
(
3
−
2
)
2
(
3
+
2
)
(
3
−
2
)
=
(
3
+
2
+
3
−
2
)
(
3
+
2
−
(
3
−
2
)
)
3
2
−
2
2
=
2
3
2
2
3
−
2
=
4
6
{\displaystyle {\frac {{\sqrt {2}}+{\sqrt {3}}}{{\sqrt {3}}-{\sqrt {2}}}}+{\frac {{\sqrt {2}}-{\sqrt {3}}}{{\sqrt {2}}+{\sqrt {3}}}}={\frac {\left({\sqrt {3}}+{\sqrt {2}}\right)^{2}-\left({\sqrt {3}}-{\sqrt {2}}\right)^{2}}{\left({\sqrt {3}}+{\sqrt {2}}\right)\left({\sqrt {3}}-{\sqrt {2}}\right)}}={\frac {\left({\sqrt {3}}+{\sqrt {2}}+{\sqrt {3}}-{\sqrt {2}}\right)\left({\sqrt {3}}+{\sqrt {2}}-\left({\sqrt {3}}-{\sqrt {2}}\right)\right)}{{\sqrt {3}}^{2}-{\sqrt {2}}^{2}}}={\frac {2{\sqrt {3}}\;2{\sqrt {2}}}{3-2}}=4{\sqrt {6}}}
;
1
3
+
6
+
1
3
−
6
=
3
−
6
+
3
+
6
(
3
+
6
)
(
3
−
6
)
=
2
3
3
2
−
6
2
=
−
2
3
−
33
{\displaystyle {\frac {1}{{\sqrt {3}}+6}}+{\frac {1}{{\sqrt {3}}-6}}={\frac {{\sqrt {3}}-6+{\sqrt {3}}+6}{\left({\sqrt {3}}+6\right)\left({\sqrt {3}}-6\right)}}={\frac {2{\sqrt {3}}}{{\sqrt {3}}^{2}-6^{2}}}=-{\frac {2{\sqrt {3}}}{-33}}}
.