Leçons de niveau 15

Réduction des endomorphismes/Exercices/Exponentielle d'une matrice

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Exponentielle d'une matrice
Image logo représentative de la faculté
Exercices no3
Leçon : Réduction des endomorphismes
Chapitre du cours : Exponentielle d'une matrice

Exercices de niveau 15.

Exo préc. :Réductions de Dunford, Jordan et Frobenius
Exo suiv. :Sommaire
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Exponentielle d'une matrice
Réduction des endomorphismes/Exercices/Exponentielle d'une matrice
 », n'a pu être restituée correctement ci-dessus.



Exercice 4-1[modifier | modifier le wikicode]

Soit antisymétrique. Que dire de  ?

Exercice 4-2[modifier | modifier le wikicode]

Soit un corps algébriquement clos. Montrer que :

a)  Si est de caractéristique , il n'existe pas de matrice telle que .

b)  Pour tous entiers , si est de caractéristique nulle ou strictement supérieure à alors, pour toute matrice , il existe telle que .