Dérivation/Exercices/Restitution organisée de connaissances
Apparence
Exercice 1-1
[modifier | modifier le wikicode]La formule donnant la dérivée du produit de deux fonctions dérivables est supposée connue.
On a énoncé ci-dessous deux propositions désignées par et . Dire pour chacune d'elles si elle est vraie ou fausse et justifier.
Dans cet exercice, désigne un entier naturel strictement supérieur à .
Soit la fonction définie sur par ; alors est dérivable sur , de dérivée donnée sur par .
Soit une fonction dérivable sur et soit la fonction définie sur par ; alors est dérivable sur , de dérivée donnée sur par .