Fiche mémoire sur l'analyse vectorielle
En raison de limitations techniques, la typographie souhaitable du titre, «
Fiche : Formulaire d'analyse vectorielleAnalyse vectorielle/Fiche/Formulaire d'analyse vectorielle », n'a pu être restituée correctement ci-dessus.
La base est
(
u
x
→
,
u
y
→
,
u
z
→
)
{\displaystyle ({\overrightarrow {u_{x}}},{\overrightarrow {u_{y}}},{\overrightarrow {u_{z}}})}
.
Opérateur
Expression
Opérateur nabla
∇
→
=
∂
∂
x
u
x
→
+
∂
∂
y
u
y
→
+
∂
∂
z
u
z
→
=
(
∂
∂
x
∂
∂
y
∂
∂
z
)
{\displaystyle {\overrightarrow {\nabla }}={\frac {\partial }{\partial x}}{\overrightarrow {u_{x}}}+{\frac {\partial }{\partial y}}{\overrightarrow {u_{y}}}+{\frac {\partial }{\partial z}}{\overrightarrow {u_{z}}}={\begin{pmatrix}{\frac {\partial }{\partial x}}\\{\frac {\partial }{\partial y}}\\{\frac {\partial }{\partial z}}\end{pmatrix}}}
Gradient
g
r
a
d
→
M
=
∇
→
M
=
∂
M
∂
x
u
x
→
+
∂
M
∂
y
u
y
→
+
∂
M
∂
z
u
z
→
=
(
∂
M
∂
x
∂
M
∂
y
∂
M
∂
z
)
{\displaystyle {\overrightarrow {\mathrm {grad} }}\ M={\overrightarrow {\nabla }}M={\frac {\partial M}{\partial x}}{\overrightarrow {u_{x}}}+{\frac {\partial M}{\partial y}}{\overrightarrow {u_{y}}}+{\frac {\partial M}{\partial z}}{\overrightarrow {u_{z}}}={\begin{pmatrix}{\frac {\partial M}{\partial x}}\\{\frac {\partial M}{\partial y}}\\{\frac {\partial M}{\partial z}}\end{pmatrix}}}
Gradient d'un vecteur[ 1] , [ 2]
g
r
a
d
¯
¯
A
→
=
t
(
∇
→
⊗
A
→
)
=
t
(
(
∂
∂
x
∂
∂
y
∂
∂
z
)
×
(
A
x
A
y
A
z
)
)
=
(
∂
A
x
∂
x
∂
A
x
∂
y
∂
A
x
∂
z
∂
A
y
∂
x
∂
A
y
∂
y
∂
A
y
∂
z
∂
A
z
∂
x
∂
A
z
∂
y
∂
A
z
∂
z
)
{\displaystyle {\overline {\overline {\mathbf {grad} }}}\ {\overrightarrow {A}}={\begin{matrix}^{t}\\\\\end{matrix}}\!\!\!\left({\overrightarrow {\nabla }}\otimes {\overrightarrow {A}}\right)={\begin{matrix}^{t}\\\\\\\\\end{matrix}}\!\!\!\left({\begin{pmatrix}{\frac {\partial }{\partial x}}\\{\frac {\partial }{\partial y}}\\{\frac {\partial }{\partial z}}\end{pmatrix}}\times {\begin{pmatrix}A_{x}&A_{y}&A_{z}\end{pmatrix}}\right)={\begin{pmatrix}{\frac {\partial A_{x}}{\partial x}}&{\frac {\partial A_{x}}{\partial y}}&{\frac {\partial A_{x}}{\partial z}}\\{\frac {\partial A_{y}}{\partial x}}&{\frac {\partial A_{y}}{\partial y}}&{\frac {\partial A_{y}}{\partial z}}\\{\frac {\partial A_{z}}{\partial x}}&{\frac {\partial A_{z}}{\partial y}}&{\frac {\partial A_{z}}{\partial z}}\end{pmatrix}}}
Divergence[ 3]
d
i
v
A
→
=
∇
→
⋅
A
→
=
∂
A
x
∂
x
+
∂
A
y
∂
y
+
∂
A
z
∂
z
=
(
∂
∂
x
∂
∂
y
∂
∂
z
)
×
(
A
x
A
y
A
z
)
{\displaystyle \mathrm {div} \,{\overrightarrow {A}}={\overrightarrow {\nabla }}\cdot {\overrightarrow {A}}={\frac {\partial A_{x}}{\partial x}}+{\frac {\partial A_{y}}{\partial y}}+{\frac {\partial A_{z}}{\partial z}}={\begin{pmatrix}{\frac {\partial }{\partial x}}&{\frac {\partial }{\partial y}}&{\frac {\partial }{\partial z}}\end{pmatrix}}\times {\begin{pmatrix}A_{x}\\A_{y}\\A_{z}\end{pmatrix}}}
Divergence d'une matrice
d
i
v
→
H
¯
¯
=
d
i
v
→
(
H
1
x
H
1
y
H
1
z
H
2
x
H
2
y
H
2
z
H
3
x
H
3
y
H
3
z
)
=
(
d
i
v
H
→
1
d
i
v
H
→
2
d
i
v
H
→
3
)
=
(
∂
H
1
x
∂
x
+
∂
H
1
y
∂
y
+
∂
H
1
z
∂
z
∂
H
2
x
∂
x
+
∂
H
2
y
∂
y
+
∂
H
2
z
∂
z
∂
H
3
x
∂
x
+
∂
H
3
y
∂
y
+
∂
H
3
z
∂
z
)
=
t
(
(
∂
∂
x
∂
∂
y
∂
∂
z
)
×
(
H
1
x
H
2
x
H
3
x
H
1
y
H
2
y
H
3
y
H
1
z
H
2
z
H
3
z
)
)
=
t
(
t
∇
→
×
t
H
¯
¯
)
=
?
H
¯
¯
×
∇
→
{\displaystyle {\begin{aligned}{\overrightarrow {\mathrm {div} }}\,{\overline {\overline {\mathbf {H} }}}&={\overrightarrow {\mathrm {div} }}\,{\begin{pmatrix}H_{1x}&H_{1y}&H_{1z}\\H_{2x}&H_{2y}&H_{2z}\\H_{3x}&H_{3y}&H_{3z}\end{pmatrix}}={\begin{pmatrix}\mathrm {div} {\overrightarrow {H}}_{1}\\\mathrm {div} {\overrightarrow {H}}_{2}\\\mathrm {div} {\overrightarrow {H}}_{3}\end{pmatrix}}={\begin{pmatrix}{\frac {\partial H_{1x}}{\partial x}}+{\frac {\partial H_{1y}}{\partial y}}+{\frac {\partial H_{1z}}{\partial z}}\\{\frac {\partial H_{2x}}{\partial x}}+{\frac {\partial H_{2y}}{\partial y}}+{\frac {\partial H_{2z}}{\partial z}}\\{\frac {\partial H_{3x}}{\partial x}}+{\frac {\partial H_{3y}}{\partial y}}+{\frac {\partial H_{3z}}{\partial z}}\end{pmatrix}}\\&={\begin{matrix}^{t}\\\\\\\end{matrix}}\!\!\!\left({\begin{pmatrix}{\frac {\partial }{\partial x}}&{\frac {\partial }{\partial y}}&{\frac {\partial }{\partial z}}\end{pmatrix}}\times {\begin{pmatrix}H_{1x}&H_{2x}&H_{3x}\\H_{1y}&H_{2y}&H_{3y}\\H_{1z}&H_{2z}&H_{3z}\end{pmatrix}}\right)={\begin{matrix}^{t}\\\\\end{matrix}}\!\!\!\left({\begin{matrix}^{t}\\\end{matrix}}\!{\overrightarrow {\nabla }}\times {\begin{matrix}^{t}\\\end{matrix}}\!{\overline {\overline {\mathbf {H} }}}\right){\stackrel {?}{=}}{\hbox{ }}{\overline {\overline {\mathbf {H} }}}\times {\overrightarrow {\nabla }}\end{aligned}}}
Rotationnel[ 4]
r
o
t
→
A
→
=
∇
→
∧
A
→
=
(
∂
A
z
∂
y
−
∂
A
y
∂
z
)
u
x
→
+
(
∂
A
x
∂
z
−
∂
A
z
∂
x
)
u
y
→
+
(
∂
A
y
∂
x
−
∂
A
x
∂
y
)
u
z
→
=
(
∂
A
z
∂
y
−
∂
A
y
∂
z
∂
A
x
∂
z
−
∂
A
z
∂
x
∂
A
y
∂
x
−
∂
A
x
∂
y
)
{\displaystyle {\overrightarrow {\mathrm {rot} }}\ {\overrightarrow {A}}={\overrightarrow {\nabla }}\wedge {\overrightarrow {A}}=\left({\frac {\partial A_{z}}{\partial y}}-{\frac {\partial A_{y}}{\partial z}}\right){\overrightarrow {u_{x}}}+\left({\frac {\partial A_{x}}{\partial z}}-{\frac {\partial A_{z}}{\partial x}}\right){\overrightarrow {u_{y}}}+\left({\frac {\partial A_{y}}{\partial x}}-{\frac {\partial A_{x}}{\partial y}}\right){\overrightarrow {u_{z}}}={\begin{pmatrix}{\frac {\partial A_{z}}{\partial y}}-{\frac {\partial A_{y}}{\partial z}}\\{\frac {\partial A_{x}}{\partial z}}-{\frac {\partial A_{z}}{\partial x}}\\{\frac {\partial A_{y}}{\partial x}}-{\frac {\partial A_{x}}{\partial y}}\end{pmatrix}}}
Laplacien
Δ
M
=
∇
→
2
M
=
∂
2
M
∂
x
2
+
∂
2
M
∂
y
2
+
∂
2
M
∂
z
2
{\displaystyle \Delta M={\overrightarrow {\nabla }}^{2}M={\frac {\partial ^{2}M}{\partial x^{2}}}+{\frac {\partial ^{2}M}{\partial y^{2}}}+{\frac {\partial ^{2}M}{\partial z^{2}}}}
Laplacien d'un vecteur
Δ
A
→
=
∇
→
2
A
→
=
Δ
A
x
u
x
→
+
Δ
A
y
u
y
→
+
Δ
A
z
u
z
→
=
(
Δ
A
x
Δ
A
y
Δ
A
z
)
{\displaystyle \Delta {\overrightarrow {A}}={\overrightarrow {\nabla }}^{2}{\overrightarrow {A}}=\Delta A_{x}{\overrightarrow {u_{x}}}+\Delta A_{y}{\overrightarrow {u_{y}}}+\Delta A_{z}{\overrightarrow {u_{z}}}={\begin{pmatrix}\Delta A_{x}\\\Delta A_{y}\\\Delta A_{z}\end{pmatrix}}}
Opérateur advection
v
→
⋅
∇
→
=
v
x
∂
∂
x
+
v
y
∂
∂
y
+
v
z
∂
∂
z
{\displaystyle {\overrightarrow {v}}\cdot {\overrightarrow {\nabla }}=v_{x}{\frac {\partial }{\partial x}}+v_{y}{\frac {\partial }{\partial y}}+v_{z}{\frac {\partial }{\partial z}}}
Advection d'un scalaire
(
v
→
⋅
∇
→
)
M
=
v
x
∂
M
∂
x
+
v
y
∂
M
∂
y
+
v
z
∂
M
∂
z
{\displaystyle \left({\overrightarrow {v}}\cdot {\overrightarrow {\nabla }}\right)M=v_{x}{\frac {\partial M}{\partial x}}+v_{y}{\frac {\partial M}{\partial y}}+v_{z}{\frac {\partial M}{\partial z}}}
Advection d'un vecteur
(
v
→
⋅
∇
→
)
A
→
=
(
(
v
→
⋅
∇
→
)
A
x
(
v
→
⋅
∇
→
)
A
y
(
v
→
⋅
∇
→
)
A
z
)
=
(
v
x
∂
A
x
∂
x
+
v
y
∂
A
x
∂
y
+
v
z
∂
A
x
∂
z
v
x
∂
A
y
∂
x
+
v
y
∂
A
y
∂
y
+
v
z
∂
A
y
∂
z
v
x
∂
A
z
∂
x
+
v
y
∂
A
z
∂
y
+
v
z
∂
A
z
∂
z
)
{\displaystyle \left({\overrightarrow {v}}\cdot {\overrightarrow {\nabla }}\right){\overrightarrow {A}}={\begin{pmatrix}{\left({\overrightarrow {v}}\cdot {\overrightarrow {\nabla }}\right)A_{x}}\\{\left({\overrightarrow {v}}\cdot {\overrightarrow {\nabla }}\right)A_{y}}\\{\left({\overrightarrow {v}}\cdot {\overrightarrow {\nabla }}\right)A_{z}}\end{pmatrix}}={\begin{pmatrix}{v_{x}{\frac {\partial A_{x}}{\partial x}}+v_{y}{\frac {\partial A_{x}}{\partial y}}+v_{z}{\frac {\partial A_{x}}{\partial z}}}\\{v_{x}{\frac {\partial A_{y}}{\partial x}}+v_{y}{\frac {\partial A_{y}}{\partial y}}+v_{z}{\frac {\partial A_{y}}{\partial z}}}\\{v_{x}{\frac {\partial A_{z}}{\partial x}}+v_{y}{\frac {\partial A_{z}}{\partial y}}+v_{z}{\frac {\partial A_{z}}{\partial z}}}\end{pmatrix}}}
Notations utilisées
Surfaces et volumes élémentaire
La base est
(
e
r
→
,
e
θ
→
,
e
z
→
)
{\displaystyle ({\overrightarrow {e_{r}}},{\overrightarrow {e_{\theta }}},{\overrightarrow {e_{z}}})}
.
d
O
M
→
=
d
r
.
e
r
→
+
r
.
d
θ
.
e
θ
→
+
d
z
.
e
z
→
{\displaystyle \mathrm {d} {\overrightarrow {OM}}=\mathrm {d} r.{\overrightarrow {e_{r}}}+r.\mathrm {d} \theta .{\overrightarrow {e_{\theta }}}+\mathrm {d} z.{\overrightarrow {e_{z}}}}
d
2
S
→
=
r
.
d
θ
.
d
z
.
e
r
→
{\displaystyle {\overrightarrow {\mathrm {d^{2}} S}}=r.\mathrm {d} \theta .\mathrm {d} z.{\overrightarrow {e_{r}}}}
d
3
V
=
r
.
d
r
.
d
θ
.
d
z
{\displaystyle \mathrm {d^{3}} V=r.\mathrm {d} r.\mathrm {d} \theta .\mathrm {d} z}
g
r
a
d
→
M
=
∂
M
∂
r
e
r
→
+
1
r
∂
M
∂
θ
e
θ
→
+
∂
M
∂
z
e
z
→
{\displaystyle {\overrightarrow {\mathrm {grad} }}\ M={\frac {\partial M}{\partial r}}{\overrightarrow {e_{r}}}+{\frac {1}{r}}{\frac {\partial M}{\partial \theta }}{\overrightarrow {e_{\theta }}}+{\frac {\partial M}{\partial z}}{\overrightarrow {e_{z}}}}
d
i
v
A
→
=
1
r
∂
(
r
.
A
r
)
∂
r
+
1
r
∂
A
θ
∂
θ
+
∂
A
z
∂
z
{\displaystyle \mathrm {div} \,{\overrightarrow {A}}={\frac {1}{r}}{\frac {\partial (r.A_{r})}{\partial r}}+{\frac {1}{r}}{\frac {\partial A_{\theta }}{\partial \theta }}+{\frac {\partial A_{z}}{\partial z}}}
r
o
t
→
A
→
=
(
1
r
∂
A
z
∂
θ
−
∂
A
θ
∂
z
)
e
r
→
+
(
∂
A
r
∂
z
−
∂
A
z
∂
r
)
e
θ
→
+
1
r
(
∂
∂
r
(
r
A
θ
)
−
∂
A
r
∂
θ
)
e
z
→
{\displaystyle {\overrightarrow {\mathrm {rot} }}\ {\overrightarrow {A}}=\left({\frac {1}{r}}{\frac {\partial A_{z}}{\partial \theta }}-{\frac {\partial A_{\theta }}{\partial z}}\right){\overrightarrow {e_{r}}}+\left({\frac {\partial A_{r}}{\partial z}}-{\frac {\partial A_{z}}{\partial r}}\right){\overrightarrow {e_{\theta }}}+{\frac {1}{r}}\left({\frac {\partial }{\partial r}}(rA_{\theta })-{\frac {\partial A_{r}}{\partial \theta }}\right){\overrightarrow {e_{z}}}}
Δ
M
=
1
r
∂
∂
r
(
r
∂
M
∂
r
)
+
1
r
2
∂
2
M
∂
θ
2
+
∂
2
M
∂
z
2
{\displaystyle \Delta M={\frac {1}{r}}{\frac {\partial }{\partial r}}\left(r{\frac {\partial M}{\partial r}}\right)+{\frac {1}{r^{2}}}{\frac {\partial ^{2}M}{\partial \theta ^{2}}}+{\frac {\partial ^{2}M}{\partial z^{2}}}}
Δ
A
→
=
[
Δ
A
r
−
1
r
2
(
A
r
+
2
∂
A
θ
∂
θ
)
]
e
r
→
+
[
Δ
A
θ
−
1
r
2
(
A
θ
−
2
∂
A
r
∂
θ
)
]
e
θ
→
+
Δ
A
z
e
z
→
{\displaystyle \Delta {\overrightarrow {A}}=\left[\Delta A_{r}-{\frac {1}{r^{2}}}\left(A_{r}+2{\frac {\partial A_{\theta }}{\partial \theta }}\right)\right]{\overrightarrow {e_{r}}}+\left[\Delta A_{\theta }-{\frac {1}{r^{2}}}\left(A_{\theta }-2{\frac {\partial A_{r}}{\partial \theta }}\right)\right]{\overrightarrow {e_{\theta }}}+\Delta A_{z}{\overrightarrow {e_{z}}}}
Notations utilisées
Surface et volume élémentaires
La base est
(
e
r
→
,
e
θ
→
,
e
ϕ
→
)
{\displaystyle ({\overrightarrow {e_{r}}},{\overrightarrow {e_{\theta }}},{\overrightarrow {e_{\phi }}})}
.
Notation classique
Notation avec l'opérateur nabla
d
i
v
(
r
o
t
→
A
→
)
=
0
{\displaystyle \mathrm {div} ({\overrightarrow {\mathrm {rot} }}\ {\overrightarrow {A}})=0}
∇
→
⋅
(
∇
→
∧
A
→
)
=
0
{\displaystyle {\overrightarrow {\nabla }}\cdot ({\overrightarrow {\nabla }}\wedge {\overrightarrow {A}})=0}
r
o
t
→
(
r
o
t
→
A
→
)
=
g
r
a
d
→
(
d
i
v
A
→
)
−
Δ
A
→
{\displaystyle {\overrightarrow {\mathrm {rot} }}({\overrightarrow {\mathrm {rot} }}\ {\overrightarrow {A}})={\overrightarrow {\mathrm {grad} }}(\mathrm {div} \ {\overrightarrow {A}})-\Delta {\overrightarrow {A}}}
∇
→
∧
(
∇
→
∧
A
→
)
=
∇
→
(
∇
→
⋅
A
→
)
−
∇
→
2
A
→
{\displaystyle {\overrightarrow {\nabla }}\wedge ({\overrightarrow {\nabla }}\wedge {\overrightarrow {A}})={\overrightarrow {\nabla }}({\overrightarrow {\nabla }}\cdot {\overrightarrow {A}})-{\overrightarrow {\nabla }}^{2}{\overrightarrow {A}}}
[ 5]
d
i
v
g
r
a
d
→
M
=
Δ
M
{\displaystyle \mathrm {div} \ {\overrightarrow {\mathrm {grad} }}\ M=\Delta M}
∇
→
⋅
(
∇
→
M
)
=
∇
→
2
M
{\displaystyle {\overrightarrow {\nabla }}\cdot ({\overrightarrow {\nabla }}M)={\overrightarrow {\nabla }}^{2}M}
r
o
t
→
g
r
a
d
→
M
=
0
→
{\displaystyle {\overrightarrow {\mathrm {rot} }}\ {\overrightarrow {\mathrm {grad} }}\ M={\overrightarrow {0}}}
∇
→
∧
(
∇
→
M
)
=
0
→
{\displaystyle {\overrightarrow {\nabla }}\wedge ({\overrightarrow {\nabla }}M)={\overrightarrow {0}}}
g
r
a
d
→
(
A
→
⋅
B
→
)
=
(
A
→
⋅
g
r
a
d
→
)
B
→
+
A
→
∧
r
o
t
→
B
→
+
(
B
→
⋅
g
r
a
d
→
)
A
→
+
B
→
∧
r
o
t
→
A
→
{\displaystyle {\overrightarrow {\mathrm {grad} }}({\overrightarrow {A}}\cdot {\overrightarrow {B}})=({\overrightarrow {A}}\cdot {\overrightarrow {\mathrm {grad} }}){\overrightarrow {B}}+{\overrightarrow {A}}\wedge {\overrightarrow {\mathrm {rot} }}\ {\overrightarrow {B}}+({\overrightarrow {B}}\cdot {\overrightarrow {\mathrm {grad} }}){\overrightarrow {A}}+{\overrightarrow {B}}\wedge {\overrightarrow {\mathrm {rot} }}\ {\overrightarrow {A}}}
g
r
a
d
→
(
A
→
2
)
=
2
(
A
→
⋅
g
r
a
d
→
)
A
→
+
2
A
→
∧
r
o
t
→
A
→
{\displaystyle {\overrightarrow {\mathrm {grad} }}({\overrightarrow {A}}^{2})=2({\overrightarrow {A}}\cdot {\overrightarrow {\mathrm {grad} }}){\overrightarrow {A}}+2{\overrightarrow {A}}\wedge {\overrightarrow {\mathrm {rot} }}\ {\overrightarrow {A}}}
d
i
v
(
A
→
∧
B
→
)
=
−
A
→
⋅
r
o
t
→
B
→
+
B
→
⋅
r
o
t
→
A
→
{\displaystyle \mathrm {div} ({\overrightarrow {A}}\wedge {\overrightarrow {B}})=-{\overrightarrow {A}}\cdot {\overrightarrow {\mathrm {rot} }}\ {\overrightarrow {B}}+{\overrightarrow {B}}\cdot {\overrightarrow {\mathrm {rot} }}\ {\overrightarrow {A}}}
r
o
t
→
(
A
→
∧
B
→
)
=
A
→
d
i
v
B
→
−
(
A
→
⋅
g
r
a
d
→
)
B
→
−
B
→
d
i
v
A
→
+
(
B
→
⋅
g
r
a
d
→
)
A
→
{\displaystyle {\overrightarrow {\mathrm {rot} }}({\overrightarrow {A}}\wedge {\overrightarrow {B}})={\overrightarrow {A}}\mathrm {div} \ {\overrightarrow {B}}-({\overrightarrow {A}}\cdot {\overrightarrow {\mathrm {grad} }}){\overrightarrow {B}}-{\overrightarrow {B}}\mathrm {div} \ {\overrightarrow {A}}+({\overrightarrow {B}}\cdot {\overrightarrow {\mathrm {grad} }}){\overrightarrow {A}}}
g
r
a
d
→
(
U
V
)
=
U
g
r
a
d
→
V
+
V
g
r
a
d
→
U
{\displaystyle {\overrightarrow {\mathrm {grad} }}(U\ V)=U{\overrightarrow {\mathrm {grad} }}\ V+V{\overrightarrow {\mathrm {grad} }}\ U}
(symétrique en U et V )
d
i
v
(
M
A
→
)
=
M
d
i
v
A
→
+
A
→
⋅
g
r
a
d
→
(
M
)
{\displaystyle \mathrm {div} (M{\overrightarrow {A}})=M\ \mathrm {div} \ {\overrightarrow {A}}+{\overrightarrow {A}}\cdot {\overrightarrow {\mathrm {grad} }}(M)}
r
o
t
→
(
M
A
→
)
=
M
r
o
t
→
A
→
+
g
r
a
d
→
(
M
)
∧
A
→
{\displaystyle {\overrightarrow {\mathrm {rot} }}(M{\overrightarrow {A}})=M{\overrightarrow {\mathrm {rot} }}\ {\overrightarrow {A}}+{\overrightarrow {\mathrm {grad} }}\ (M)\wedge {\overrightarrow {A}}}
Δ
(
U
⋅
V
)
=
U
Δ
V
+
2
g
r
a
d
→
U
⋅
g
r
a
d
→
V
+
V
Δ
U
{\displaystyle \Delta (U\cdot V)=U\Delta V+2\ {\overrightarrow {\mathrm {grad} }}\ U\cdot {\overrightarrow {\mathrm {grad} }}\ V+V\Delta U}
d
i
v
(
U
g
r
a
d
→
V
−
V
g
r
a
d
→
U
)
=
U
Δ
V
−
V
Δ
U
{\displaystyle \mathrm {div} (U{\overrightarrow {\mathrm {grad} }}\ V-V{\overrightarrow {\mathrm {grad} }}\ U)=U\Delta V-V\Delta U}
Début d’un théorème
Pour toute surface S , délimitée par le contour fermé C , pour tout champ vectoriel
A
→
{\displaystyle \scriptstyle {\vec {A}}}
, on a :
∮
C
A
→
⋅
d
l
→
=
∫
∫
S
r
o
t
→
A
→
⋅
d
S
→
{\displaystyle \oint _{C}{\overrightarrow {A}}\cdot \mathrm {d} {\overrightarrow {l}}=\int \!\!\!\!\!\int _{S}{\overrightarrow {\mathrm {rot} }}\,{\overrightarrow {A}}\cdot \mathrm {d} {\overrightarrow {S}}}
Fin du théorème
Début d’un théorème
Soit
M
{\displaystyle M}
un champ scalaire. Soit V un volume de l'espace, délimité par sa surface fermée S . Alors :
∫
⊂
⊃
∫
S
M
.
d
S
→
=
∫
∫
∫
V
g
r
a
d
→
M
.
d
V
{\displaystyle \int \!\!\!\!\!\!\!\subset \!\!\!\supset \!\!\!\!\!\!\!\int _{S}M.\mathrm {d} {\overrightarrow {S}}=\int \!\!\!\!\!\int \!\!\!\!\!\int _{V}{\overrightarrow {\mathrm {grad} }}\,M.\mathrm {d} V}
Fin du théorème
Début d’un théorème
Soit
A
→
{\displaystyle \scriptstyle {\vec {A}}}
un champ vectoriel. Soit V un volume de l'espace, délimité par sa surface fermée S . Alors :
∫
∫
∫
V
(
d
i
v
A
→
)
d
V
=
∫
⊂
⊃
∫
S
A
→
⋅
d
S
→
{\displaystyle \int \!\!\!\!\!\int \!\!\!\!\!\int _{V}\left(\mathrm {div} \,{\overrightarrow {A}}\right)\mathrm {d} V=\int \!\!\!\!\!\!\!\subset \!\!\!\supset \!\!\!\!\!\!\!\int _{S}{\overrightarrow {A}}\cdot \mathrm {d} {\overrightarrow {S}}}
Fin du théorème
↑ Le symbole
⊗
{\displaystyle \otimes }
représente le produit dyadique :
A
→
⊗
B
→
=
A
→
×
t
B
→
{\displaystyle \textstyle {{\overrightarrow {A}}\otimes {\overrightarrow {B}}={\overrightarrow {A}}\times {}^{t}\!{\overrightarrow {B}}}}
.
↑ Le symbole
×
{\displaystyle \times }
représente le produit matriciel classique.
↑ Le symbole
⋅
{\displaystyle \cdot }
représente le produit scalaire :
A
→
⋅
B
→
=
t
A
→
×
B
→
{\displaystyle \textstyle {{\overrightarrow {A}}\cdot {\overrightarrow {B}}={}^{t}\!{\overrightarrow {A}}\times {\overrightarrow {B}}}}
.
↑ Le symbole
∧
{\displaystyle \wedge }
représente le produit vectoriel .
↑ Rotationnel du rotationnel