Aller au contenu

Évolution temporelle des systèmes mécaniques/Mouvement des planètes et des satellites

Leçons de niveau 13
Une page de Wikiversité, la communauté pédagogique libre.
Début de la boite de navigation du chapitre
Mouvement des planètes et des satellites
Icône de la faculté
Chapitre no 4
Leçon : Évolution temporelle des systèmes mécaniques
Chap. préc. :Mouvement parabolique dans un champ de pesanteur uniforme
Chap. suiv. :Systèmes mécaniques oscillants
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Évolution temporelle des systèmes mécaniques : Mouvement des planètes et des satellites
Évolution temporelle des systèmes mécaniques/Mouvement des planètes et des satellites
 », n'a pu être restituée correctement ci-dessus.

Le système solaire

[modifier | modifier le wikicode]

Planètes et satellites

[modifier | modifier le wikicode]

Ces objets sont en mouvement grâce à la force de gravitation universelle.

Loi d'attraction universelle (rappels)

[modifier | modifier le wikicode]

Corps ponctuels

[modifier | modifier le wikicode]

On considère deux objets :

  • un objet de masse mA placé en A
  • un objet de masse mB placé en B

Comme ces corps ont une masse, ils exercent l'un sur l'autre une force, d'expression :

On peut supposer qu'un corps est ponctuel si on peut identifier le corps à son centre de gravité en lequel est placée toute la masse du corps. On ne prend ainsi en compte que certains phénomènes pour simplifier une étude. Par exemple, supposer la Terre comme un corps ponctuel dans son mouvement autour du Soleil néglige la rotation de la Terre sur elle-même, ainsi que le fait que la force d'attraction exercée par le Soleil n’est pas égale en tout point de la Terre.

Objets à répartition sphérique de masse

[modifier | modifier le wikicode]

Si les deux objets sont deux sphères homogènes, de centres de gravité respectifs A et B, alors la force exercée par le corps en A sur le corps en B s'applique en B et vaut :

Référentiel héliocentrique

[modifier | modifier le wikicode]

Le repère attaché au référentiel héliocentrique, est défini par le centre S du Soleil, et 3 axes dont les directions données par 3 étoiles lointaines considérées comme fixes E₁, E₂ et E₃.

Référentiel géocentrique

[modifier | modifier le wikicode]
Panneau d’avertissement Ne pas confondre avec référentiel terrestre !!


Utilisé pour décrire les mouvements des satellites terrestres,le référentiel géocentrique a pour origine le centre de gravité terrestre, et ses axes sont définis par rapport à des étoiles. Ainsi, il n’est pas solidaire de la Terre dans son mouvement de rotation autour des pôles, et ce référentiel peut être considéré comme galiléen sur des expériences terrestres "peu longues" (une journée maximum), car la rotation de la Terre autour du Soleil n'est alors pas prise en compte. Ce reférentiel est un solide imaginaire constitué de la terre et d'étoiles suffisamment lointaines pour sembler immobiles

Les lois de Kepler

[modifier | modifier le wikicode]

Les deux premières lois de Kepler (1609)

[modifier | modifier le wikicode]

3e loi de Kepler (1619)

[modifier | modifier le wikicode]
Application en formule

, avec la constante qui dépend du système attracteur.

Satellite d'une planète

[modifier | modifier le wikicode]

Les 3 lois de Kepler s'appliquent également aux satellites d'une planète.