Aller au contenu
Menu principal
Menu principal
déplacer vers la barre latérale
masquer
Navigation
Accueil
Départements
Scolarité
Bibliothèque
Recherche
Contribuer
Aide
Communauté
Projets
Bac à sable
Communiquer
La salle café
Discussion instantanée
Requêtes
Outils
Modifications récentes
Pages spéciales
Téléverser un fichier
Utilisateur
Rechercher
Rechercher
Apparence
Faire un don
Créer un compte
Se connecter
Outils personnels
Faire un don
Créer un compte
Se connecter
Pages pour les contributeurs déconnectés
en savoir plus
Contributions
Discussion
Transformée de Laplace/Fiche/Table des transformées de Laplace
Ajouter des langues
Ajouter des liens
Page
Discussion
français
Lire
Modifier
Modifier le wikicode
Voir l’historique
Page
Outils
déplacer vers la barre latérale
masquer
Actions
Lire
Modifier
Modifier le wikicode
Voir l’historique
Général
Pages liées
Suivi des pages liées
Téléverser un fichier
Pages spéciales
Lien permanent
Informations sur la page
Citer cette page
Obtenir l'URL raccourcie
Télécharger le code QR
Imprimer / exporter
Créer un livre
Télécharger comme PDF
Version imprimable
Dans d’autres projets
Apparence
déplacer vers la barre latérale
masquer
Une page de Wikiversité, la communauté pédagogique libre.
<
Transformée de Laplace
Version imprimable
Fiche mémoire sur les transformées de Laplace usuelles
En raison de limitations techniques, la typographie souhaitable du titre, «
Fiche : Table des transformées de Laplace
Transformée de Laplace/Fiche/Table des transformées de Laplace
», n'a pu être restituée correctement ci-dessus.
Transformées de Laplace directes
(
Modifier le tableau ci-dessous
)
Fonction
Transformée de Laplace de la fonction
δ
(
t
)
{\displaystyle \delta (t)}
1
{\displaystyle 1}
1
{\displaystyle 1}
1
p
{\displaystyle {\frac {1}{p}}}
t
{\displaystyle t}
1
p
2
{\displaystyle {\frac {1}{p^{2}}}}
t
n
∀
n
≥
0
{\displaystyle t^{n}\qquad \forall n\geq 0}
n
!
p
n
+
1
{\displaystyle {\frac {n!}{p^{n+1}}}}
t
∀
t
∈
R
+
{\displaystyle {\sqrt {t}}\qquad \forall t\in R_{+}}
1
2
π
p
3
{\displaystyle {\frac {1}{2}}{\sqrt {\frac {\pi }{p^{3}}}}}
1
t
∀
t
∈
R
+
∗
{\displaystyle {\frac {1}{\sqrt {t}}}\qquad \forall t\in R_{+}^{*}}
π
p
{\displaystyle {\sqrt {\frac {\pi }{p}}}}
e
−
c
t
{\displaystyle e^{-ct}}
avec (
c
≥
0
{\displaystyle c\geq 0}
)
1
p
+
c
{\displaystyle {\frac {1}{p+c}}}
t
e
−
c
t
{\displaystyle te^{-ct}}
1
(
p
+
c
)
2
{\displaystyle {\frac {1}{(p+c)^{2}}}}
t
2
e
−
c
t
{\displaystyle t^{2}e^{-ct}}
2
(
p
+
c
)
3
{\displaystyle {\frac {2}{(p+c)^{3}}}}
t
n
e
−
c
t
∀
n
≥
0
{\displaystyle t^{n}e^{-ct}\qquad \forall n\geq 0}
n
!
(
p
+
c
)
n
+
1
{\displaystyle {\frac {n!}{(p+c)^{n+1}}}}
a
t
∀
a
>
0
{\displaystyle a^{t}\qquad \forall a>0}
1
p
−
ln
(
a
)
{\displaystyle {\frac {1}{p-\ln(a)}}}
sin
(
a
t
)
{\displaystyle \sin(at)}
a
p
2
+
a
2
{\displaystyle {\frac {a}{p^{2}+a^{2}}}}
t
sin
(
a
t
)
{\displaystyle t\sin(at)}
2
a
p
(
p
2
+
a
2
)
2
{\displaystyle {\frac {2ap}{(p^{2}+a^{2})^{2}}}}
t
2
sin
(
a
t
)
{\displaystyle t^{2}\sin(at)}
2
a
(
3
p
2
−
a
2
)
(
p
2
+
a
2
)
3
{\displaystyle {\frac {2a(3p^{2}-a^{2})}{(p^{2}+a^{2})^{3}}}}
cos
(
a
t
)
{\displaystyle \cos(at)}
p
p
2
+
a
2
{\displaystyle {\frac {p}{p^{2}+a^{2}}}}
t
cos
(
a
t
)
{\displaystyle t\cos(at)}
p
2
−
a
2
(
p
2
+
a
2
)
2
{\displaystyle {\frac {p^{2}-a^{2}}{(p^{2}+a^{2})^{2}}}}
t
2
cos
(
a
t
)
{\displaystyle t^{2}\cos(at)}
2
p
(
p
2
−
3
a
2
)
(
p
2
+
a
2
)
3
{\displaystyle {\frac {2p(p^{2}-3a^{2})}{(p^{2}+a^{2})^{3}}}}
sin
(
a
t
+
b
)
{\displaystyle \sin(at+b)}
a
cos
(
b
)
+
p
sin
(
b
)
p
2
+
a
2
{\displaystyle {\frac {a\cos(b)+p\sin(b)}{p^{2}+a^{2}}}}
cos
(
a
t
+
b
)
{\displaystyle \cos(at+b)}
p
cos
(
b
)
−
a
sin
(
b
)
p
2
+
a
2
{\displaystyle {\frac {p\cos(b)-a\sin(b)}{p^{2}+a^{2}}}}
sinh
(
a
t
)
{\displaystyle \sinh(at)}
a
p
2
−
a
2
{\displaystyle {\frac {a}{p^{2}-a^{2}}}}
t
sinh
(
a
t
)
{\displaystyle t\sinh(at)}
2
a
p
(
p
2
−
a
2
)
2
{\displaystyle {\frac {2ap}{(p^{2}-a^{2})^{2}}}}
cosh
(
a
t
)
{\displaystyle \cosh(at)}
p
p
2
−
a
2
{\displaystyle {\frac {p}{p^{2}-a^{2}}}}
t
cosh
(
a
t
)
{\displaystyle t\cosh(at)}
p
2
+
a
2
(
p
2
−
a
2
)
2
{\displaystyle {\frac {p^{2}+a^{2}}{(p^{2}-a^{2})^{2}}}}
sin
(
a
t
)
e
−
c
t
{\displaystyle \sin(at)e^{-ct}}
a
(
p
+
c
)
2
+
a
2
{\displaystyle {\frac {a}{(p+c)^{2}+a^{2}}}}
cos
(
a
t
)
e
−
c
t
{\displaystyle \cos(at)e^{-ct}}
p
+
c
(
p
+
c
)
2
+
a
2
{\displaystyle {\frac {p+c}{(p+c)^{2}+a^{2}}}}
sin
(
a
t
+
b
)
e
−
c
t
{\displaystyle \sin(at+b)e^{-ct}}
a
cos
(
b
)
+
(
p
+
c
)
sin
(
b
)
(
p
+
c
)
2
+
a
2
{\displaystyle {\frac {a\cos(b)+(p+c)\sin(b)}{(p+c)^{2}+a^{2}}}}
cos
(
a
t
+
b
)
e
−
c
t
{\displaystyle \cos(at+b)e^{-ct}}
(
p
+
c
)
cos
(
b
)
−
a
sin
(
b
)
(
p
+
c
)
2
+
a
2
{\displaystyle {\frac {(p+c)\cos(b)-a\sin(b)}{(p+c)^{2}+a^{2}}}}
sinh
(
a
t
)
e
−
c
t
{\displaystyle \sinh(at)e^{-ct}}
a
(
p
+
c
)
2
−
a
2
{\displaystyle {\frac {a}{(p+c)^{2}-a^{2}}}}
cosh
(
a
t
)
e
−
c
t
{\displaystyle \cosh(at)e^{-ct}}
p
+
c
(
p
+
c
)
2
−
a
2
{\displaystyle {\frac {p+c}{(p+c)^{2}-a^{2}}}}
sin
2
(
a
t
)
{\displaystyle \sin ^{2}(at)}
2
a
2
p
(
p
2
+
4
a
2
)
{\displaystyle {\frac {2a^{2}}{p(p^{2}+4a^{2})}}}
sin
3
(
a
t
)
{\displaystyle \sin ^{3}(at)}
6
a
3
(
p
2
+
a
2
)
(
p
2
+
9
a
2
)
{\displaystyle {\frac {6a^{3}}{(p^{2}+a^{2})(p^{2}+9a^{2})}}}
cos
2
(
a
t
)
{\displaystyle \cos ^{2}(at)}
p
2
+
2
a
2
p
(
p
2
+
4
a
2
)
{\displaystyle {\frac {p^{2}+2a^{2}}{p(p^{2}+4a^{2})}}}
cos
3
(
a
t
)
{\displaystyle \cos ^{3}(at)}
p
(
p
2
+
7
a
2
)
(
p
2
+
a
2
)
(
p
2
+
9
a
2
)
{\displaystyle {\frac {p(p^{2}+7a^{2})}{(p^{2}+a^{2})(p^{2}+9a^{2})}}}
sinh
2
(
t
)
{\displaystyle \sinh ^{2}(t)}
2
p
(
p
2
−
4
)
∀
p
≠
2
{\displaystyle {\frac {2}{p(p^{2}-4)}}\qquad \forall p\neq 2}
cosh
2
(
t
)
{\displaystyle \cosh ^{2}(t)}
p
2
−
2
p
(
p
2
−
4
)
∀
p
≠
2
{\displaystyle {\frac {p^{2}-2}{p(p^{2}-4)}}\qquad \forall p\neq 2}
sin
(
a
t
)
sin
(
b
t
)
{\displaystyle \sin(at)\sin(bt)}
2
a
b
p
[
(
p
2
+
(
a
−
b
)
2
]
[
(
p
2
+
(
a
+
b
)
2
]
{\displaystyle {\frac {2abp}{\left[(p^{2}+(a-b)^{2}\right]\left[(p^{2}+(a+b)^{2}\right]}}}
cos
(
a
t
)
cos
(
b
t
)
{\displaystyle \cos(at)\cos(bt)}
p
(
p
2
+
a
2
+
b
2
)
[
(
p
2
+
(
a
−
b
)
2
]
[
(
p
2
+
(
a
+
b
)
2
]
{\displaystyle {\frac {p(p^{2}+a^{2}+b^{2})}{\left[(p^{2}+(a-b)^{2}\right]\left[(p^{2}+(a+b)^{2}\right]}}}
sin
(
a
t
)
cos
(
b
t
)
{\displaystyle \sin(at)\cos(bt)}
a
(
p
2
+
a
2
−
b
2
)
[
(
p
2
+
(
a
−
b
)
2
]
[
(
p
2
+
(
a
+
b
)
2
]
{\displaystyle {\frac {a(p^{2}+a^{2}-b^{2})}{\left[(p^{2}+(a-b)^{2}\right]\left[(p^{2}+(a+b)^{2}\right]}}}
Transformées de Laplace inverses
(
Modifier le tableau ci-dessous
)
Transformée de Laplace de la fonction
Fonction
1
{\displaystyle 1}
δ
(
t
)
{\displaystyle \delta (t)}
1
p
{\displaystyle {\frac {1}{p}}}
1
{\displaystyle 1}
1
p
2
{\displaystyle {\frac {1}{p^{2}}}}
t
{\displaystyle t}
1
p
n
{\displaystyle {\frac {1}{p^{n}}}}
t
n
−
1
(
n
−
1
)
!
∀
n
≥
1
{\displaystyle {\frac {t^{n-1}}{(n-1)!}}\qquad \forall n\geq 1}
1
p
{\displaystyle {\frac {1}{\sqrt {p}}}}
1
π
t
∀
t
∈
R
+
∗
{\displaystyle {\frac {1}{\sqrt {\pi t}}}\qquad \forall t\in R_{+}^{*}}
1
p
3
{\displaystyle {\frac {1}{\sqrt {p^{3}}}}}
2
t
π
{\displaystyle 2{\sqrt {\frac {t}{\pi }}}}
1
p
+
a
{\displaystyle {\frac {1}{p+a}}}
e
−
a
t
{\displaystyle e^{-at}}
1
p
(
p
+
a
)
{\displaystyle {\frac {1}{p(p+a)}}}
1
−
e
−
a
t
a
∀
a
≠
0
{\displaystyle {1-e^{-at} \over a}\qquad \forall a\neq 0}
1
p
2
(
p
+
a
)
{\displaystyle {\frac {1}{p^{2}(p+a)}}}
e
−
a
t
−
1
+
a
t
a
2
∀
a
≠
0
{\displaystyle {\frac {e^{-at}-1+at}{a^{2}}}\qquad \forall a\neq 0}
1
p
(
p
+
a
)
2
{\displaystyle {\frac {1}{p(p+a)^{2}}}}
1
−
e
−
a
t
(
1
+
a
t
)
a
2
∀
a
≠
0
{\displaystyle {1-e^{-at}(1+at) \over a^{2}}\qquad \forall a\neq 0}
1
(
p
+
a
)
(
p
+
b
)
{\displaystyle {\frac {1}{(p+a)(p+b)}}}
e
−
b
t
−
e
−
a
t
a
−
b
∀
a
≠
b
{\displaystyle {\frac {e^{-bt}-e^{-at}}{a-b}}\qquad \forall a\neq b}
p
(
p
+
a
)
(
p
+
b
)
{\displaystyle {\frac {p}{(p+a)(p+b)}}}
a
e
−
a
t
−
b
e
−
b
t
a
−
b
∀
a
≠
b
{\displaystyle {\frac {ae^{-at}-be^{-bt}}{a-b}}\qquad \forall a\neq b}
1
(
p
+
a
)
(
p
+
b
)
(
p
+
c
)
{\displaystyle {\frac {1}{(p+a)(p+b)(p+c)}}}
(
b
−
c
)
e
−
a
t
+
(
c
−
a
)
e
−
b
t
+
(
a
−
b
)
e
−
c
t
(
a
−
b
)
(
a
−
c
)
(
b
−
c
)
∀
a
≠
b
∨
a
≠
c
∨
b
≠
c
{\displaystyle {(b-c)e^{-at}+(c-a)e^{-bt}+(a-b)e^{-ct} \over (a-b)(a-c)(b-c)}\qquad \forall a\neq b\lor a\neq c\lor b\neq c}
1
(
p
+
a
)
2
{\displaystyle {\frac {1}{(p+a)^{2}}}}
t
e
−
a
t
{\displaystyle te^{-at}}
p
(
p
+
a
)
2
{\displaystyle {\frac {p}{(p+a)^{2}}}}
e
−
a
t
(
1
−
a
t
)
{\displaystyle e^{-at}(1-at)}
1
(
p
+
a
)
(
p
+
b
)
2
{\displaystyle {\frac {1}{(p+a)(p+b)^{2}}}}
e
−
a
t
+
[
(
a
−
b
)
t
−
1
]
e
−
b
t
(
a
−
b
)
2
∀
a
≠
b
{\displaystyle {\frac {e^{-at}+\left[(a-b)t-1\right]e^{-bt}}{(a-b)^{2}}}\qquad \forall a\neq b}
1
p
(
p
+
a
)
(
p
+
b
)
{\displaystyle {\frac {1}{p(p+a)(p+b)}}}
b
e
−
a
t
−
a
e
−
b
t
+
a
−
b
a
2
b
−
a
b
2
∀
a
≠
b
{\displaystyle {be^{-at}-ae^{-bt}+a-b \over \ a^{2}b-ab^{2}}\qquad \forall a\neq b}
p
+
c
p
(
p
+
a
)
(
p
+
b
)
{\displaystyle {\frac {p+c}{p(p+a)(p+b)}}}
b
(
c
−
a
)
e
−
a
t
+
a
(
b
−
c
)
e
−
b
t
+
c
(
a
−
b
)
a
b
(
a
−
b
)
∀
a
≠
b
{\displaystyle {b(c-a)e^{-at}+a(b-c)e^{-bt}+c(a-b) \over \ ab(a-b)}\qquad \forall a\neq b}
p
2
+
c
p
+
d
p
(
p
+
a
)
(
p
+
b
)
{\displaystyle {\frac {p^{2}+cp+d}{p(p+a)(p+b)}}}
b
(
a
2
−
a
c
+
d
)
e
−
a
t
−
a
(
b
2
−
b
c
+
d
)
e
−
b
t
+
d
(
a
−
b
)
a
b
(
a
−
b
)
∀
a
≠
b
{\displaystyle {b(a^{2}-ac+d)e^{-at}-a(b^{2}-bc+d)e^{-bt}+d(a-b) \over \ ab(a-b)}\qquad \forall a\neq b}
1
(
p
+
a
)
3
{\displaystyle {\frac {1}{(p+a)^{3}}}}
t
2
e
−
a
t
2
{\displaystyle {\frac {t^{2}e^{-at}}{2}}}
ln
(
p
+
a
p
+
b
)
{\displaystyle \ln \left({\frac {p+a}{p+b}}\right)}
e
−
b
t
−
e
−
a
t
t
∀
t
∈
R
+
∗
{\displaystyle {\frac {e^{-bt}-e^{-at}}{t}}\qquad \forall t\in R_{+}^{*}}
1
p
2
+
a
2
{\displaystyle {\frac {1}{p^{2}+a^{2}}}}
sin
(
a
t
)
a
∀
a
≠
0
{\displaystyle {\sin(at) \over a}\qquad \forall a\neq 0}
1
p
(
p
2
+
a
2
)
{\displaystyle {\frac {1}{p(p^{2}+a^{2})}}}
1
−
cos
(
a
t
)
a
2
∀
a
≠
0
{\displaystyle {1-\cos(at) \over a^{2}}\qquad \forall a\neq 0}
p
p
2
+
a
2
{\displaystyle {\frac {p}{p^{2}+a^{2}}}}
cos
(
a
t
)
{\displaystyle \cos(at)}
p
+
a
p
(
p
2
+
b
2
)
{\displaystyle {\frac {p+a}{p(p^{2}+b^{2})}}}
a
(
1
−
cos
(
b
t
)
)
+
b
sin
(
b
t
)
b
2
∀
b
≠
0
{\displaystyle {a(1-\cos(bt))+b\sin(bt) \over b^{2}}\qquad \forall b\neq 0}
p
2
+
c
p
+
d
p
(
p
2
+
b
2
)
{\displaystyle {\frac {p^{2}+cp+d}{p(p^{2}+b^{2})}}}
(
b
2
−
d
)
cos
(
b
t
)
+
b
c
sin
(
b
t
)
+
d
b
2
∀
b
≠
0
{\displaystyle {(b^{2}-d)\cos(bt)+bc\sin(bt)+d \over b^{2}}\qquad \forall b\neq 0}
1
p
2
−
a
2
{\displaystyle {\frac {1}{p^{2}-a^{2}}}}
sinh
(
a
t
)
a
∀
a
≠
0
{\displaystyle {\sinh(at) \over a}\qquad \forall a\neq 0}
p
p
2
−
a
2
{\displaystyle {\frac {p}{p^{2}-a^{2}}}}
cosh
(
a
t
)
{\displaystyle \cosh(at)}
1
(
p
+
b
)
2
+
a
2
{\displaystyle {\frac {1}{(p+b)^{2}+a^{2}}}}
e
−
b
t
sin
(
a
t
)
a
∀
a
≠
0
{\displaystyle {e^{-bt}\sin(at) \over a}\qquad \forall a\neq 0}
p
+
b
(
p
+
b
)
2
+
a
2
{\displaystyle {\frac {p+b}{(p+b)^{2}+a^{2}}}}
e
−
b
t
cos
(
a
t
)
{\displaystyle e^{-bt}\cos(at)}
1
(
p
2
+
a
2
)
2
{\displaystyle {\frac {1}{(p^{2}+a^{2})^{2}}}}
sin
(
a
t
)
−
a
t
cos
(
a
t
)
2
a
3
∀
a
≠
0
{\displaystyle {\sin(at)-at\cos(at) \over 2a^{3}}\qquad \forall a\neq 0}
p
(
p
2
+
a
2
)
2
{\displaystyle {\frac {p}{(p^{2}+a^{2})^{2}}}}
t
sin
(
a
t
)
2
a
∀
a
≠
0
{\displaystyle {t\sin(at) \over 2a}\qquad \forall a\neq 0}
p
2
(
p
2
+
a
2
)
2
{\displaystyle {\frac {p^{2}}{(p^{2}+a^{2})^{2}}}}
sin
(
a
t
)
+
a
t
cos
(
a
t
)
2
a
∀
a
≠
0
{\displaystyle {\sin(at)+at\cos(at) \over 2a}\qquad \forall a\neq 0}
1
p
3
+
a
3
{\displaystyle {\frac {1}{p^{3}+a^{3}}}}
e
−
a
t
−
e
a
t
2
(
cos
(
3
2
a
t
)
−
3
sin
(
3
2
a
t
)
)
3
a
2
∀
a
≠
0
{\displaystyle {e^{-at}-e^{\frac {at}{2}}\left(\cos \left({\frac {\sqrt {3}}{2}}at\right)-{\sqrt {3}}\sin \left({\frac {\sqrt {3}}{2}}at\right)\right) \over 3a^{2}}\qquad \forall a\neq 0}
p
p
3
+
a
3
{\displaystyle {\frac {p}{p^{3}+a^{3}}}}
e
a
t
2
(
3
sin
(
3
a
t
2
)
+
cos
(
3
a
t
2
)
)
−
e
−
a
t
3
a
∀
a
≠
0
{\displaystyle {e^{at \over 2}\left({\sqrt {3}}\sin \left({\frac {{\sqrt {3}}at}{2}}\right)+\cos \left({\frac {{\sqrt {3}}at}{2}}\right)\right)-e^{-at} \over 3a}\qquad \forall a\neq 0}
p
2
p
3
+
a
3
{\displaystyle {\frac {p^{2}}{p^{3}+a^{3}}}}
e
−
a
t
+
2
e
a
t
2
cos
(
3
a
t
2
)
3
{\displaystyle {e^{-at}+2e^{\frac {at}{2}}\cos \left({\frac {{\sqrt {3}}at}{2}}\right) \over 3}}
1
p
2
(
1
+
τ
1
p
)
(
1
+
τ
2
p
)
{\displaystyle {\frac {1}{p^{2}(1+\tau _{1}p)(1+\tau _{2}p)}}}
τ
1
2
e
−
t
/
τ
1
−
τ
2
2
e
−
t
/
τ
2
+
(
τ
1
−
τ
2
)
(
t
−
τ
1
−
τ
2
)
τ
1
−
τ
2
∀
τ
1
≠
τ
2
{\displaystyle {\tau _{1}^{2}e^{-t/\tau _{1}}-\tau _{2}^{2}e^{-t/\tau _{2}}+(\tau _{1}-\tau _{2})(t-\tau _{1}-\tau _{2}) \over \tau _{1}-\tau _{2}}\qquad \forall \tau _{1}\neq \tau _{2}}
Catégories
:
Fiches mémoires
Transformée de Laplace