Aller au contenu

Recherche:Mise au point d'un drone subaquatique/Annexe/Bibliographie

Une page de Wikiversité, la communauté pédagogique libre.
Bibliographie
Image logo représentative de la faculté
Annexe 3
Recherche : Mise au point d'un drone subaquatique
Précédent :Articles connexes dans Wikipédia
Suivant :Liens externes utiles
En raison de limitations techniques, la typographie souhaitable du titre, « Annexe : Bibliographie
Mise au point d'un drone subaquatique/Annexe/Bibliographie
 », n'a pu être restituée correctement ci-dessus.



à compléter et homogénéiser et classer alphabétiquement

  • Benacchio Véronique (2017). Étude par imagerie in situ des processus biophysiques en milieu fluvial : éléments méthodologiques et applications. Histoire. Université de Lyon, . Français. <NNT:2017LYSE2056>. <tel-01619134>https://tel.archives-ouvertes.fr/tel-01619134/document |PDF, 310 p (voir chap sur biofilms et périphyton p 50, et passages sur la dynamique des bois flotté ou coulés p47. L'auteur montre que le fond n'est jamais correctement visible du dessus, une vue subaquatique serait idéale)
  • Calisti M (2017) Soft Robotics in Underwater Legged Locomotion: From Octopus–Inspired Solutions to Running Robots. In Soft Robotics: Trends, Applications and Challenges (pp. 31-36). Springer International Publishing. (chapitre relatif à la conception d'un robot inspiré des pieuvres, d'abord pour une vitesse lente (type locomotion rampante) puis vitesse plus rapides (marche, bond)... pour augmenter la mobilité des robots sous-marins en milieu benthique (résumé). Voir aussi vidéo
  • Liu, X., Tan, Y. H., Di, B., & Chen, B. M. (2017, July). Hydrodynamic modelling for a small-scale underwater vehicle using computational fluid dynamics. In Control & Automation (ICCA), 2017 13th IEEE International Conference on (pp. 373-378). IEEE. ([http://ieeexplore.ieee.org/abstract/document/8003089/ résumé)
  • Floreano D (2015) Wood, Science, technology and the future of small autonomous drones. Nature 521, 460–466.
  • Low R.H, HuT, Mohammed S, Tangorra J, Kovač M (2015), Perspectives on biologically inspired hybrid and multi-modal locomotion. Bioinspir. Biomim. 10, 020301.
  • Z. Zhakypov, K. Mori, K. Hosoda, J. Paik, Designing minimal and scalable insect-inspired multi-locomotion millirobots. Nature 571, 381–386 (2019).
  • A. L. Desbiens, M. T. Pope, D. L. Christensen, E. W. Hawkes, M. R. Cutkosky, Design principles for efficient, repeated jumpgliding. Bioinspir. Biomim. 9, 025009 (2014).
  • L. Daler, J. Lecoeur, P. B. Hählen, D. Floreano, A flying robot with adaptive morphology for multi-modal locomotion, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2013), pp. 1361–1366.
  • M. A. Woodward, M. Sitti, MultiMo-Bat: A biologically inspired integrated jumping-gliding robot. Int. J. Robot. Res. 33, 1511–1529 (2014).
  • A. Vidyasagar, J.-C. Zufferey, D. Floreano, M. Kovač, Performance analysis of jump-gliding locomotion for miniature robotics. Bioinspir. Biomim. 10, 025006 (2015).
  • K. Peterson, P. Birkmeyer, R. Dudley, R. S. Fearing, A wing-assisted running robot and implications for avian flight evolution. Bioinspir. Biomim. 6, 46008 (2011).
  • Y. Chen, N. Doshi, B. Goldberg, H. Wang, R. J. Wood, Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot. Nat. Commun. 9, 2495 (2018).
  • A. Crespi, A. Badertscher, A. Guignard, A. J. Ijspeert, AmphiBot I: An amphibious snake-like robot. Robot. Autonom. Syst. 50, 163–175 (2005).
  • W. Hu, G. Z. Lum, M. Mastrangeli, M. Sitti, Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).
  • H. Alzu’bi, I. Mansour, O. Rawashdeh, Loon Copter: Implementation of a hybrid unmanned aquatic-aerial quadcopter with active buoyancy control. J. Field Robot. 35, 764–778 (2018).
  • M. M. Maia, P. Soni, F. J. Diez, Demonstration of an aerial and submersible vehicle capable of flight and underwater navigation with seamless air-water transition. arXiv:1507.01932 (2015).
  • .-A. Peloquin, D. Thibault, A. L. Desbiens, Design of a passive vertical takeoff and landing aquatic UAV. IEEE Robot. Autom. Lett. 2, 381–388 (2017).
  • B. Chang, J. Myeong, E. Virot, C. Clanet, H.-Y. Kim, S. Jung, Jumping dynamics of aquatic animals. J. R. Soc. Interface 16, 20190014 (2019).
  • .-S. Koh, E. Yang, G.-P. Jung, S.-P. Jung, J. H. Son, S.-I. Lee, P. G. Jablonski, R. J. Wood, H.-Y. Kim, K.-J. Cho, Jumping on water: Surface tension–dominated jumping of water striders and robotic insects. Science 349, 517–521 (2015).

Abstract/FREE Full TextGoogle Scholar

  • J. Davenport, How and why do flying fish fly? Rev. Fish Biol. Fish. 4, 184–214 (1994).
  • L. Wen, T. Wang, G. Wu, J. Liang, Quantitative thrust efficiency of a self-propulsive robotic fish: Experimental method and hydrodynamic investigation. IEEE/ASME Trans. Mechatron. 18, 1027–1038 (2013).
  • S. Garthe, S. Benvenuti, W. A. Montevecchi, Pursuit plunging by northern gannets (Sula bassana) feeding on capelin (Mallotus villosus). Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 1717–1722 (2000).
  • R. O’Dor, J. Stewart, W. Gilly, J. Payne, T. C. Borges, T. Thys, Squid rocket science: How squid launch into air. Deep Sea Res. II Top. Stud. Oceanogr. 95, 113–118 (2013).
  • M. Kovac, The bioinspiration design paradigm: A perspective for soft robotics. Soft Robot. 1, 28–37 (2014).
  • R. Siddall, M. Kovač, Launching the AquaMAV: Bioinspired design for aerial-aquatic robotic platforms. Bioinspir. Biomim. 9, 031001 (2014).
  • J. Mo, Z. Miao, B. Li, Y. Zhang, Z. Song, Design, analysis, and performance verification of a water jet thruster for amphibious jumping robot. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233, 5431–5447 (2019).
  • L. Jian, Z. Jianing, W. Zhenlong, CFD simulation of effect of vortex ring for squid jet propulsion and experiments on a bionic jet propulsor. IJUNESST 9, 211–226 (2016).
  • F. G. Serchi, A. Arienti, I. Baldoli, C. Laschi, An elastic pulsed-jet thruster for soft unmanned underwater vehicles, in 2013 IEEE International Conference on Robotics and Automation (IEEE, 2013), pp. 5103–5110.
  • W. A. Churaman, L. J. Currano, C. J. Morris, J. E. Rajkowski, S. Bergbreiter, The first launch of an autonomous thrust-driven microrobot using nanoporous energetic silicon. J. Microelectromech. Syst. 21, 198–205 (2012).
  • Y. Chen, H. Wang, E. F. Helbling, N. T. Jafferis, R. Zufferey, A. Ong, K. Ma, N. Gravish, P. Chirarattananon, M. Kovac, R. J. Wood, A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci. Robot. 2, eaao5619 (2017).
  • M. T. Tolley, R. F. Shepherd, M. Karpelson, N. W. Bartlett, K. C. Galloway, M. Wehner, R. Nunes, G. M. Whitesides, R. J. Wood, An untethered jumping soft robot, in IEEE International Conference on Intelligent Robots and Systems (IEEE, 2014), pp. 561–566.
  • N. W. Bartlett, M. T. Tolley, J. T. B. Overvelde, J. C. Weaver, B. Mosadegh, K. Bertoldi, G. M. Whitesides, R. J. Wood, A 3D-printed, functionally graded soft robot powered by combustion. Science 349, 161–165 (2015).
  • M. Loepfe, C. M. Schumacher, U. B. Lustenberger, W. J. Stark, An untethered, jumping roly-poly soft robot driven by combustion. Soft Robot. 2, 33–41 (2015).
  • H. L. Newhouse, P. R. Payne, Underwater Power Source Study (Payne Inc., 1981).
  • J. Borchsenius, S. Pinder, Underwater glider propulsion using chemical hydrides, in OCEANS 2010 IEEE Sydney, Sydney, NSW, Australia, 24 to 27 May 2010.
  • R. E. Threlfall, The Story of 100 Years of Phosphorus Making 1851–1951 (Albright & Wilson, 1951).
  • C. J. Gommes, A more thorough analysis of water rockets: Moist adiabats, transient flows, and inertial forces in a soda bottle. Am. J. Phys. 78, 236–243 (2010).
  • R. Siddall, M. Kovac, Fast aquatic escape with a jet thruster. IEEE/ASME Trans. Mechatron. 22, 217–226 (2017).
  • R. Siddall, G. Kennedy, M. Kovac, High-power propulsion strategies for aquatic take-off in robotics, in Robotics Research, A. Bicchi, W. Burgard, Eds. (Springer Proceedings in Advanced Robotics, Springer, 2017), vol. 2, pp. 5–20.
  • Z. Zhang, J. Zhao, H. Chen, D. Chen, A survey of bioinspired jumping robot: Takeoff, air posture adjustment, and landing buffer. Appl. Bionics Biomech. 2017, 4780160 (2017).
  • Y. H. Tan, R. Siddall, M. Kovac, Efficient aerial-aquatic locomotion with a single propulsion system. IEEE Robot. Autom. Lett. 2, 1304–1311 (2017).