Étude de la qualité des harmoniques par un gradateur
On retrouve ce type de gradateur sur les simple variateur de lumière pour luminaire halogène le plus souvent. Le courant est mis en circulation à partir d'un certain instant de la sinusoïde et disparait naturellement à son passage à zéro, donc, pour une charge résistive, au passage à zéro de la tension.
La tension est définit par :
u
(
t
)
{\displaystyle u(t)}
tel que :
u
(
t
)
=
U
2
sin
ω
t
{\displaystyle u(t)=U{\sqrt {2}}\sin \omega t}
Avec :
U = 230 V
ω
=
2
π
f
{\displaystyle \omega =2\pi f}
f = 50 Hz
Le courant est définit par :
i
(
t
)
{\displaystyle i(t)}
tel que :
i
(
t
)
=
{
0
si
k
π
<
θ
<
k
π
+
α
I
2
sin
(
ω
t
)
si
k
π
+
α
<
θ
<
(
k
+
1
)
π
{\displaystyle i(t)={\begin{cases}0&{\mbox{si }}k\pi <\theta <k\pi +\alpha \\I{\sqrt {2}}\sin \left(\omega t\right)&{\mbox{si }}k\pi +\alpha <\theta <\left(k+1\right)\pi \end{cases}}}
Avec :
θ
=
ω
t
{\displaystyle \theta =\omega t}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
U
=
R
×
I
{\displaystyle U=R\times I}
On peut écrit le courant :
i
(
t
)
=
I
0
+
∑
a
=
0
a
=
∞
I
a
2
sin
(
a
ω
t
−
φ
a
)
{\displaystyle i(t)=I_{0}+\sum _{a=0}^{a=\infty }I_{a}{\sqrt {2}}\sin \left(a\omega t-\varphi _{a}\right)}
Dans la suite de l'étude,
I
0
=
0
{\displaystyle I_{0}=0}
,
I
a
=
A
a
2
+
B
a
2
{\displaystyle I_{a}={\sqrt {A_{a}^{2}+B_{a}^{2}}}}
et
tan
φ
a
=
−
B
a
A
a
{\displaystyle \tan \varphi _{a}=-{\frac {B_{a}}{A_{a}}}}
Décomposition en série de Fourier du courant :
A
a
=
2
2
π
∫
0
2
π
[
i
(
t
)
sin
(
a
θ
)
]
d
θ
{\displaystyle A_{a}={\frac {2}{2\pi }}\int _{0}^{2\pi }\left[i(t)\sin \left(a\theta \right)\right]d\theta }
=
2
2
π
[
∫
0
π
(
2
2
sin
θ
×
sin
(
a
θ
)
)
d
θ
+
∫
π
2
π
(
2
2
sin
θ
×
sin
(
a
θ
)
)
d
θ
]
{\displaystyle ={\frac {2}{2\pi }}{\begin{bmatrix}\int _{0}^{\pi }\left(2{\sqrt {2}}\sin \theta \times \sin(a\theta )\right)d\theta \\+\int _{\pi }^{2\pi }\left(2{\sqrt {2}}\sin \theta \times \sin(a\theta )\right)d\theta \end{bmatrix}}}
=
2
2
π
[
∫
α
π
(
2
2
sin
θ
×
sin
(
a
θ
)
)
d
θ
+
∫
a
l
p
h
a
+
π
2
π
(
2
2
sin
θ
×
sin
(
a
θ
)
)
d
θ
]
{\displaystyle ={\frac {2}{2\pi }}{\begin{bmatrix}\int _{\alpha }^{\pi }\left(2{\sqrt {2}}\sin \theta \times \sin(a\theta )\right)d\theta \\+\int _{alpha+\pi }^{2\pi }\left(2{\sqrt {2}}\sin \theta \times \sin(a\theta )\right)d\theta \end{bmatrix}}}
=
I
2
2
π
{
∫
α
π
[
1
2
(
cos
(
θ
−
a
θ
)
−
cos
(
θ
+
a
θ
)
)
]
d
θ
+
∫
α
+
π
2
π
[
1
2
(
cos
(
θ
−
a
θ
)
−
cos
(
θ
+
a
θ
)
)
]
d
θ
}
{\displaystyle ={\frac {I{\sqrt {2}}}{2\pi }}{\begin{Bmatrix}\int _{\alpha }^{\pi }\left[{\frac {1}{2}}\left(\cos(\theta -a\theta )-\cos(\theta +a\theta )\right)\right]d\theta \\+\int _{\alpha +\pi }^{2\pi }\left[{\frac {1}{2}}\left(\cos(\theta -a\theta )-\cos(\theta +a\theta )\right)\right]d\theta \end{Bmatrix}}}
A
a
=
I
2
2
π
{
∫
α
π
[
1
2
(
cos
(
(
1
−
a
)
θ
)
−
cos
(
(
1
+
a
)
θ
)
)
]
d
θ
+
∫
α
+
π
2
π
[
1
2
(
cos
(
(
1
−
a
)
θ
)
−
cos
(
(
1
+
a
)
θ
)
)
]
d
θ
}
{\displaystyle A_{a}={\frac {I{\sqrt {2}}}{2\pi }}{\begin{Bmatrix}\int _{\alpha }^{\pi }\left[{\frac {1}{2}}\left(\cos \left((1-a)\theta \right)-\cos \left((1+a)\theta \right)\right)\right]d\theta \\+\int _{\alpha +\pi }^{2\pi }\left[{\frac {1}{2}}\left(\cos \left((1-a)\theta \right)-\cos \left((1+a)\theta \right)\right)\right]d\theta \end{Bmatrix}}}
∀
a
≠
1
{\displaystyle \forall a\neq 1}
A
a
=
I
2
2
π
{
[
sin
(
(
1
−
a
)
θ
)
1
−
a
]
α
π
−
[
sin
(
(
1
+
a
)
θ
)
1
+
a
]
α
π
+
[
sin
(
(
1
−
a
)
θ
)
1
−
a
]
α
+
π
2
π
−
[
sin
(
(
1
+
a
)
θ
)
1
+
a
]
α
+
π
2
π
}
{\displaystyle A_{a}={\frac {I{\sqrt {2}}}{2\pi }}{\begin{Bmatrix}\left[{\frac {\sin \left((1-a)\theta \right)}{1-a}}\right]_{\alpha }^{\pi }\\-\left[{\frac {\sin \left((1+a)\theta \right)}{1+a}}\right]_{\alpha }^{\pi }\\+\left[{\frac {\sin \left((1-a)\theta \right)}{1-a}}\right]_{\alpha +\pi }^{2\pi }\\-\left[{\frac {\sin \left((1+a)\theta \right)}{1+a}}\right]_{\alpha +\pi }^{2\pi }\end{Bmatrix}}}
=
I
2
2
π
{
[
sin
(
(
1
−
a
)
π
)
−
sin
(
(
1
−
a
)
α
)
1
−
a
]
−
[
sin
(
(
1
+
a
)
π
)
−
sin
(
(
1
+
a
)
α
)
1
+
a
]
+
[
sin
(
(
1
−
a
)
2
π
)
−
sin
(
(
1
−
a
)
(
α
+
π
)
)
1
−
a
]
−
[
sin
(
(
1
+
a
)
2
π
)
−
sin
(
(
1
−
a
)
(
α
+
π
)
)
1
+
a
]
}
{\displaystyle ={\frac {I{\sqrt {2}}}{2\pi }}{\begin{Bmatrix}\left[{\frac {\sin \left((1-a)\pi \right)-\sin \left((1-a)\alpha \right)}{1-a}}\right]\\-\left[{\frac {\sin \left((1+a)\pi \right)-\sin \left((1+a)\alpha \right)}{1+a}}\right]\\+\left[{\frac {\sin \left((1-a)2\pi \right)-\sin \left((1-a)(\alpha +\pi )\right)}{1-a}}\right]\\-\left[{\frac {\sin \left((1+a)2\pi \right)-\sin \left((1-a)(\alpha +\pi )\right)}{1+a}}\right]\end{Bmatrix}}}
=
I
2
2
π
{
[
−
sin
(
(
1
−
a
)
α
)
1
−
a
]
−
[
−
sin
(
(
1
+
a
)
α
)
1
+
a
]
+
[
−
sin
(
(
1
−
a
)
(
α
+
π
)
)
1
−
a
]
−
[
−
sin
(
(
1
+
a
)
(
α
+
π
)
)
1
+
a
]
}
{\displaystyle ={\frac {I{\sqrt {2}}}{2\pi }}{\begin{Bmatrix}\left[{\frac {-\sin \left((1-a)\alpha \right)}{1-a}}\right]\\-\left[{\frac {-\sin \left((1+a)\alpha \right)}{1+a}}\right]\\+\left[{\frac {-\sin \left((1-a)(\alpha +\pi )\right)}{1-a}}\right]\\-\left[{\frac {-\sin \left((1+a)(\alpha +\pi )\right)}{1+a}}\right]\end{Bmatrix}}}
=
I
2
2
π
{
[
−
sin
(
(
1
−
a
)
α
)
−
sin
(
(
1
−
a
)
(
α
+
π
)
)
1
−
a
]
−
[
−
sin
(
(
1
+
a
)
α
)
+
sin
(
(
1
+
a
)
(
α
+
π
)
)
1
+
a
]
}
{\displaystyle ={\frac {I{\sqrt {2}}}{2\pi }}{\begin{Bmatrix}\left[{\frac {-\sin \left((1-a)\alpha \right)-\sin \left((1-a)(\alpha +\pi )\right)}{1-a}}\right]\\-\left[{\frac {-\sin \left((1+a)\alpha \right)+\sin \left((1+a)(\alpha +\pi )\right)}{1+a}}\right]\end{Bmatrix}}}
=
I
2
2
π
{
2
1
+
a
sin
[
(
(
1
+
a
)
α
)
+
(
(
1
+
a
)
(
α
+
π
)
)
2
]
cos
[
(
(
1
+
a
)
α
)
−
(
(
1
+
a
)
(
α
+
π
)
)
2
]
−
2
1
−
a
sin
[
(
(
1
−
a
)
α
)
+
(
(
1
−
a
)
(
α
+
π
)
)
2
]
cos
[
(
(
1
−
a
)
α
)
−
(
(
1
−
a
)
(
α
+
π
)
)
2
]
}
{\displaystyle ={\frac {I{\sqrt {2}}}{2\pi }}{\begin{Bmatrix}{\frac {2}{1+a}}\sin \left[{\frac {\left((1+a)\alpha \right)+\left((1+a)(\alpha +\pi )\right)}{2}}\right]\cos \left[{\frac {\left((1+a)\alpha \right)-\left((1+a)(\alpha +\pi )\right)}{2}}\right]\\-{\frac {2}{1-a}}\sin \left[{\frac {\left((1-a)\alpha \right)+\left((1-a)(\alpha +\pi )\right)}{2}}\right]\cos \left[{\frac {\left((1-a)\alpha \right)-\left((1-a)(\alpha +\pi )\right)}{2}}\right]\end{Bmatrix}}}
=
I
2
2
π
{
2
1
+
a
sin
[
α
+
a
α
+
α
+
π
+
a
α
+
a
π
2
]
cos
[
α
+
a
α
−
α
−
π
−
a
α
−
a
π
2
]
−
2
1
−
a
sin
[
α
−
a
α
+
α
+
π
−
a
α
−
a
π
2
]
cos
[
α
−
a
α
−
α
−
π
+
a
α
+
a
π
2
]
}
{\displaystyle ={\frac {I{\sqrt {2}}}{2\pi }}{\begin{Bmatrix}{\frac {2}{1+a}}\sin \left[{\frac {\alpha +a\alpha +\alpha +\pi +a\alpha +a\pi }{2}}\right]\cos \left[{\frac {\alpha +a\alpha -\alpha -\pi -a\alpha -a\pi }{2}}\right]\\-{\frac {2}{1-a}}\sin \left[{\frac {\alpha -a\alpha +\alpha +\pi -a\alpha -a\pi }{2}}\right]\cos \left[{\frac {\alpha -a\alpha -\alpha -\pi +a\alpha +a\pi }{2}}\right]\end{Bmatrix}}}
=
I
2
π
{
1
1
+
a
sin
[
α
(
2
+
2
a
)
+
π
(
1
+
a
)
2
]
cos
[
−
π
(
1
+
a
)
2
]
−
1
1
−
a
sin
[
α
(
2
−
2
a
)
+
π
(
1
−
a
)
2
]
cos
[
−
π
(
1
+
a
)
2
]
}
{\displaystyle ={\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}{\frac {1}{1+a}}\sin \left[{\frac {\alpha \left(2+2a\right)+\pi \left(1+a\right)}{2}}\right]\cos \left[{\frac {-\pi \left(1+a\right)}{2}}\right]\\-{\frac {1}{1-a}}\sin \left[{\frac {\alpha \left(2-2a\right)+\pi \left(1-a\right)}{2}}\right]\cos \left[{\frac {-\pi \left(1+a\right)}{2}}\right]\end{Bmatrix}}}
=
−
1
a
+
1
I
2
π
{
1
1
+
a
sin
[
α
(
2
+
2
a
)
+
π
(
1
+
a
)
2
]
−
1
1
−
a
sin
[
α
(
2
−
2
a
)
+
π
(
1
−
a
)
2
]
}
{\displaystyle =-1^{a+1}{\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}{\frac {1}{1+a}}\sin \left[{\frac {\alpha \left(2+2a\right)+\pi \left(1+a\right)}{2}}\right]\\-{\frac {1}{1-a}}\sin \left[{\frac {\alpha \left(2-2a\right)+\pi \left(1-a\right)}{2}}\right]\end{Bmatrix}}}
=
−
1
a
+
1
I
2
π
{
1
1
+
a
[
sin
(
α
(
1
+
a
)
)
cos
(
π
2
(
1
+
a
)
)
+
cos
(
α
(
1
+
a
)
)
sin
(
π
2
(
1
+
a
)
)
]
−
1
1
−
a
[
sin
(
α
(
1
−
a
)
)
cos
(
π
2
(
1
−
a
)
)
+
cos
(
α
(
1
−
a
)
)
sin
(
π
2
(
1
−
a
)
)
]
}
{\displaystyle =-1^{a+1}{\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}{\frac {1}{1+a}}{\begin{bmatrix}\sin \left(\alpha (1+a)\right)\cos \left({\frac {\pi }{2}}(1+a)\right)\\+\cos \left(\alpha (1+a)\right)\sin \left({\frac {\pi }{2}}(1+a)\right)\end{bmatrix}}\\-{\frac {1}{1-a}}{\begin{bmatrix}\sin \left(\alpha (1-a)\right)\cos \left({\frac {\pi }{2}}(1-a)\right)\\+\cos \left(\alpha (1-a)\right)\sin \left({\frac {\pi }{2}}(1-a)\right)\end{bmatrix}}\end{Bmatrix}}}
=
−
1
a
+
1
I
2
π
{
1
1
+
a
[
sin
(
π
2
(
1
+
a
)
)
cos
(
α
(
1
+
a
)
)
]
−
1
1
−
a
[
sin
(
π
2
(
1
−
a
)
)
cos
(
α
(
1
−
a
)
)
]
}
{\displaystyle =-1^{a+1}{\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}{\frac {1}{1+a}}\left[\sin \left({\frac {\pi }{2}}(1+a)\right)\cos \left(\alpha (1+a)\right)\right]\\-{\frac {1}{1-a}}\left[\sin \left({\frac {\pi }{2}}(1-a)\right)\cos \left(\alpha (1-a)\right)\right]\end{Bmatrix}}}
A
a
=
{
?
si
a
=
1
0
si
a
=
2
k
+
1
avec
k
∈
N
−
I
2
π
{
cos
(
α
(
1
+
α
)
)
1
+
a
+
cos
(
α
(
1
+
α
)
)
1
−
a
}
si
a
=
4
k
avec
k
∈
N
I
2
π
{
cos
(
α
(
1
+
α
)
)
1
+
a
+
cos
(
α
(
1
+
α
)
)
1
−
a
}
si
a
=
4
k
−
2
avec
k
∈
N
∗
{\displaystyle A_{a}={\begin{cases}?&{\mbox{si }}a=1\\0&{\mbox{si }}a=2k+1{\mbox{ avec }}k\in \mathbb {N} \\-{\frac {I{\sqrt {2}}}{\pi }}\left\{{\frac {\cos \left(\alpha (1+\alpha )\right)}{1+a}}+{\frac {\cos \left(\alpha (1+\alpha )\right)}{1-a}}\right\}&{\mbox{si }}a=4k{\mbox{ avec }}k\in \mathbb {N} \\{\frac {I{\sqrt {2}}}{\pi }}\left\{{\frac {\cos \left(\alpha (1+\alpha )\right)}{1+a}}+{\frac {\cos \left(\alpha (1+\alpha )\right)}{1-a}}\right\}&{\mbox{si }}a=4k-2{\mbox{ avec }}k\in \mathbb {N} ^{*}\end{cases}}}
B
a
=
2
2
π
∫
0
2
π
[
i
(
θ
)
cos
(
a
θ
)
]
d
θ
{\displaystyle B_{a}={\frac {2}{2\pi }}\int _{0}^{2\pi }\left[i(\theta )\cos \left(a\theta \right)\right]d\theta }
=
1
π
{
∫
0
π
[
I
2
sin
θ
×
cos
(
a
θ
)
]
d
θ
+
∫
π
2
π
[
I
2
sin
θ
×
cos
(
a
θ
)
]
d
θ
}
{\displaystyle ={\frac {1}{\pi }}{\begin{Bmatrix}\int _{0}^{\pi }\left[I{\sqrt {2}}\sin \theta \times \cos \left(a\theta \right)\right]d\theta \\+\int _{\pi }^{2\pi }\left[I{\sqrt {2}}\sin \theta \times \cos \left(a\theta \right)\right]d\theta \end{Bmatrix}}}
=
1
π
{
∫
α
π
[
I
2
sin
θ
×
cos
(
a
θ
)
]
d
θ
+
∫
α
+
π
2
π
[
I
2
sin
θ
×
cos
(
a
θ
)
]
d
θ
}
{\displaystyle ={\frac {1}{\pi }}{\begin{Bmatrix}\int _{\alpha }^{\pi }\left[I{\sqrt {2}}\sin \theta \times \cos \left(a\theta \right)\right]d\theta \\+\int _{\alpha +\pi }^{2\pi }\left[I{\sqrt {2}}\sin \theta \times \cos \left(a\theta \right)\right]d\theta \end{Bmatrix}}}
=
I
2
π
{
∫
α
π
[
1
2
(
sin
(
θ
+
a
θ
)
+
sin
(
θ
−
a
θ
)
)
]
d
θ
+
∫
α
+
π
2
π
[
1
2
(
sin
(
θ
+
a
θ
)
+
sin
(
θ
−
a
θ
)
)
]
d
θ
}
{\displaystyle ={\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}\int _{\alpha }^{\pi }\left[{\frac {1}{2}}\left(\sin(\theta +a\theta )+\sin(\theta -a\theta )\right)\right]d\theta \\+\int _{\alpha +\pi }^{2\pi }\left[{\frac {1}{2}}\left(\sin(\theta +a\theta )+\sin(\theta -a\theta )\right)\right]d\theta \end{Bmatrix}}}
=
I
2
π
{
∫
α
π
sin
[
(
1
+
a
)
θ
]
d
θ
+
∫
α
π
sin
[
(
1
−
a
)
θ
]
d
θ
+
∫
α
+
π
2
π
sin
[
(
1
+
a
)
θ
]
d
θ
+
∫
α
+
π
2
π
sin
[
(
1
−
a
)
θ
]
d
θ
}
{\displaystyle ={\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}\int _{\alpha }^{\pi }\sin \left[(1+a)\theta \right]d\theta \\+\int _{\alpha }^{\pi }\sin \left[(1-a)\theta \right]d\theta \\+\int _{\alpha +\pi }^{2\pi }\sin \left[(1+a)\theta \right]d\theta \\+\int _{\alpha +\pi }^{2\pi }\sin \left[(1-a)\theta \right]d\theta \end{Bmatrix}}}
∀
a
∈
N
−
{
1
}
{\displaystyle \forall a\in \mathbb {N} -\{1\}}
=
I
2
π
{
[
−
cos
(
1
+
a
)
θ
1
+
a
]
α
π
+
[
−
cos
(
1
−
a
)
θ
1
−
a
]
α
π
+
[
−
cos
(
1
+
a
)
θ
1
+
a
]
α
+
π
2
π
+
[
−
cos
(
1
−
a
)
θ
1
−
a
]
α
+
π
2
π
}
{\displaystyle ={\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}\left[{\frac {-\cos(1+a)\theta }{1+a}}\right]_{\alpha }^{\pi }\\+\left[{\frac {-\cos(1-a)\theta }{1-a}}\right]_{\alpha }^{\pi }\\+\left[{\frac {-\cos(1+a)\theta }{1+a}}\right]_{\alpha +\pi }^{2\pi }\\+\left[{\frac {-\cos(1-a)\theta }{1-a}}\right]_{\alpha +\pi }^{2\pi }\end{Bmatrix}}}
=
I
2
π
{
[
cos
(
(
1
+
a
)
α
)
−
cos
(
(
1
+
a
)
π
)
1
+
a
]
+
[
cos
(
(
1
+
a
)
(
α
+
π
)
)
−
cos
(
(
1
+
a
)
2
π
)
1
−
a
]
+
[
cos
(
(
1
+
a
)
(
α
+
π
)
)
−
cos
(
(
1
+
a
)
2
π
)
1
+
a
]
+
[
cos
(
(
1
−
a
)
(
α
+
π
)
)
−
cos
(
(
1
−
a
)
2
π
)
1
−
a
]
}
{\displaystyle ={\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}\left[{\frac {\cos \left((1+a)\alpha \right)-\cos \left((1+a)\pi \right)}{1+a}}\right]\\+\left[{\frac {\cos \left((1+a)(\alpha +\pi )\right)-\cos \left((1+a)2\pi \right)}{1-a}}\right]\\+\left[{\frac {\cos \left((1+a)(\alpha +\pi )\right)-\cos \left((1+a)2\pi \right)}{1+a}}\right]\\+\left[{\frac {\cos \left((1-a)(\alpha +\pi )\right)-\cos \left((1-a)2\pi \right)}{1-a}}\right]\\\end{Bmatrix}}}
=
I
2
π
{
[
cos
(
(
1
+
a
)
α
)
−
(
−
1
)
a
+
1
1
+
a
]
+
[
cos
(
(
1
+
a
)
(
α
+
π
)
)
−
(
−
1
)
a
+
1
1
−
a
]
+
[
cos
(
(
1
+
a
)
(
α
+
π
)
)
−
1
1
+
a
]
+
[
cos
(
(
1
−
a
)
(
α
+
π
)
)
−
1
1
−
a
]
}
{\displaystyle ={\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}\left[{\frac {\cos \left((1+a)\alpha \right)-\left(-1\right)^{a+1}}{1+a}}\right]\\+\left[{\frac {\cos \left((1+a)(\alpha +\pi )\right)-\left(-1\right)^{a+1}}{1-a}}\right]\\+\left[{\frac {\cos \left((1+a)(\alpha +\pi )\right)-1}{1+a}}\right]\\+\left[{\frac {\cos \left((1-a)(\alpha +\pi )\right)-1}{1-a}}\right]\end{Bmatrix}}}
=
I
2
π
{
[
cos
(
(
1
+
a
)
α
)
+
(
−
1
)
a
+
cos
(
(
1
+
a
)
(
α
+
π
)
)
−
1
1
+
a
]
+
[
cos
(
(
1
−
a
)
α
)
+
(
−
1
)
a
+
cos
(
(
1
−
a
)
(
α
+
π
)
)
−
1
1
−
a
]
}
{\displaystyle ={\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}\left[{\frac {\cos \left((1+a)\alpha \right)+\left(-1\right)^{a}+\cos \left((1+a)(\alpha +\pi )\right)-1}{1+a}}\right]\\+\left[{\frac {\cos \left((1-a)\alpha \right)+\left(-1\right)^{a}+\cos \left((1-a)(\alpha +\pi )\right)-1}{1-a}}\right]\\\end{Bmatrix}}}
=
I
2
π
{
1
1
+
a
[
2
cos
(
(
1
+
a
)
α
+
(
1
+
a
)
(
α
+
π
)
2
)
cos
(
(
1
+
a
)
α
−
(
1
+
a
)
(
α
+
π
)
2
)
+
(
−
1
)
a
−
1
]
+
1
1
−
a
[
2
cos
(
(
1
−
a
)
α
+
(
1
−
a
)
(
α
+
π
)
2
)
cos
(
(
1
−
a
)
α
−
(
1
−
a
)
(
α
+
π
)
2
)
+
(
−
1
)
a
−
1
]
}
{\displaystyle ={\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}{\frac {1}{1+a}}\left[2\cos \left({\frac {(1+a)\alpha +(1+a)(\alpha +\pi )}{2}}\right)\cos \left({\frac {(1+a)\alpha -(1+a)(\alpha +\pi )}{2}}\right)+\left(-1\right)^{a}-1\right]\\+{\frac {1}{1-a}}\left[2\cos \left({\frac {(1-a)\alpha +(1-a)(\alpha +\pi )}{2}}\right)\cos \left({\frac {(1-a)\alpha -(1-a)(\alpha +\pi )}{2}}\right)+\left(-1\right)^{a}-1\right]\end{Bmatrix}}}
=
I
2
π
{
1
1
+
a
[
2
cos
(
α
+
a
α
+
α
+
π
+
a
α
+
a
π
2
)
cos
(
α
+
a
α
−
α
−
π
−
a
α
−
a
π
2
)
+
(
−
1
)
a
−
1
]
+
1
1
−
a
[
2
cos
(
α
−
a
α
+
α
+
π
−
a
α
−
a
π
2
)
cos
(
α
−
a
α
−
α
−
π
+
a
α
+
a
π
2
)
+
(
−
1
)
a
−
1
]
}
{\displaystyle ={\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}{\frac {1}{1+a}}\left[2\cos \left({\frac {\alpha +a\alpha +\alpha +\pi +a\alpha +a\pi }{2}}\right)\cos \left({\frac {\alpha +a\alpha -\alpha -\pi -a\alpha -a\pi }{2}}\right)+\left(-1\right)^{a}-1\right]\\+{\frac {1}{1-a}}\left[2\cos \left({\frac {\alpha -a\alpha +\alpha +\pi -a\alpha -a\pi }{2}}\right)\cos \left({\frac {\alpha -a\alpha -\alpha -\pi +a\alpha +a\pi }{2}}\right)+\left(-1\right)^{a}-1\right]\end{Bmatrix}}}
=
I
2
π
{
1
1
+
a
[
2
cos
(
(
2
α
+
π
)
(
1
+
a
)
2
)
cos
(
−
π
(
1
+
a
)
2
)
+
(
−
1
)
a
−
1
]
+
1
1
−
a
[
2
cos
(
(
2
α
+
π
)
(
1
−
a
)
2
)
cos
(
−
π
(
1
−
a
)
2
)
+
(
−
1
)
a
−
1
]
}
{\displaystyle ={\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}{\frac {1}{1+a}}\left[2\cos \left({\frac {(2\alpha +\pi )(1+a)}{2}}\right)\cos \left({\frac {-\pi (1+a)}{2}}\right)+\left(-1\right)^{a}-1\right]\\+{\frac {1}{1-a}}\left[2\cos \left({\frac {(2\alpha +\pi )(1-a)}{2}}\right)\cos \left({\frac {-\pi (1-a)}{2}}\right)+\left(-1\right)^{a}-1\right]\end{Bmatrix}}}
B
a
=
I
2
π
{
1
1
+
a
[
(
−
1
)
a
−
1
]
+
1
1
−
a
[
(
−
1
)
a
−
1
]
}
{\displaystyle B_{a}={\frac {I{\sqrt {2}}}{\pi }}{\begin{Bmatrix}{\frac {1}{1+a}}\left[\left(-1\right)^{a}-1\right]\\+{\frac {1}{1-a}}\left[\left(-1\right)^{a}-1\right]\end{Bmatrix}}}
B
a
=
{
?
si
a
=
1
0
si
a
=
2
k
+
1
avec
k
∈
N
∗
−
I
2
π
(
1
a
+
1
+
1
a
−
1
)
si
a
=
2
k
avec
k
∈
N
{\displaystyle B_{a}={\begin{cases}?&{\mbox{si }}a=1\\0&{\mbox{si }}a=2k+1{\mbox{ avec }}k\in \mathbb {N} ^{*}\\-{\frac {I{\sqrt {2}}}{\pi }}\left({\frac {1}{a+1}}+{\frac {1}{a-1}}\right)&{\mbox{si }}a=2k{\mbox{ avec }}k\in \mathbb {N} \end{cases}}}
p
(
t
)
=
u
(
t
)
×
i
(
t
)
{\displaystyle p(t)=u(t)\times i(t)}
P
=
p
(
t
)
¯
{\displaystyle P={\overline {p(t)}}}
=
1
2
π
∫
0
2
π
[
p
(
t
)
]
d
t
{\displaystyle ={\frac {1}{2\pi }}\int _{0}^{2\pi }\left[p(t)\right]dt}
=
2
2
π
∫
0
π
[
u
(
t
)
×
i
(
t
)
]
d
t
{\displaystyle ={\frac {2}{2\pi }}\int _{0}^{\pi }\left[u(t)\times i(t)\right]dt}
=
1
π
∫
α
π
[
u
(
t
)
×
i
(
t
)
]
d
t
{\displaystyle ={\frac {1}{\pi }}\int _{\alpha }^{\pi }\left[u(t)\times i(t)\right]dt}
=
1
π
∫
α
π
[
(
U
2
sin
θ
)
×
(
I
2
sin
θ
)
]
d
θ
{\displaystyle ={\frac {1}{\pi }}\int _{\alpha }^{\pi }\left[\left(U{\sqrt {2}}\sin \theta \right)\times \left(I{\sqrt {2}}\sin \theta \right)\right]d\theta }
=
2
U
I
π
∫
α
π
[
sin
2
θ
]
d
θ
{\displaystyle ={\frac {2UI}{\pi }}\int _{\alpha }^{\pi }\left[\sin ^{2}\theta \right]d\theta }
=
2
U
I
π
∫
α
π
[
1
−
cos
(
2
θ
)
2
]
d
θ
{\displaystyle ={\frac {2UI}{\pi }}\int _{\alpha }^{\pi }\left[{\frac {1-\cos \left(2\theta \right)}{2}}\right]d\theta }
=
U
I
π
[
θ
−
sin
(
2
θ
)
2
]
α
π
{\displaystyle ={\frac {UI}{\pi }}\left[\theta -{\frac {\sin \left(2\theta \right)}{2}}\right]_{\alpha }^{\pi }}
=
U
I
π
[
π
−
sin
(
2
π
)
2
−
α
−
sin
(
2
α
)
2
]
{\displaystyle ={\frac {UI}{\pi }}\left[\pi -{\frac {\sin \left(2\pi \right)}{2}}-\alpha -{\frac {\sin \left(2\alpha \right)}{2}}\right]}
P
=
U
I
π
[
π
−
α
+
sin
(
2
α
)
2
]
{\displaystyle P={\frac {UI}{\pi }}\left[\pi -\alpha +{\frac {\sin \left(2\alpha \right)}{2}}\right]}
I
e
f
f
=
∑
a
=
1
a
=
∞
(
I
a
2
)
{\displaystyle I_{eff}={\sqrt {\sum _{a=1}^{a=\infty }\left(I_{a}^{2}\right)}}}
T
H
D
=
∑
a
=
2
a
=
∞
(
I
a
I
1
)
2
=
∑
a
=
2
a
=
∞
I
a
2
I
1
=
I
H
M
I
1
{\displaystyle THD={\sqrt {\sum _{a=2}^{a=\infty }\left({\frac {I_{a}}{I_{1}}}\right)^{2}}}={\frac {\sqrt {\sum _{a=2}^{a=\infty }{I_{a}}^{2}}}{I_{1}}}={\frac {I_{HM}}{I_{1}}}}
D
F
=
∑
a
=
2
a
=
∞
I
a
2
I
e
f
f
=
I
H
M
I
e
f
f
{\displaystyle DF={\frac {\sqrt {\sum _{a=2}^{a=\infty }{I_{a}}^{2}}}{I_{eff}}}={\frac {I_{HM}}{I_{eff}}}}
S
2
=
(
∑
a
=
1
∞
U
a
2
)
×
(
∑
a
=
1
∞
I
a
2
)
{\displaystyle S^{2}=\left(\sum _{a=1}^{\infty }U_{a}^{2}\right)\times \left(\sum _{a=1}^{\infty }I_{a}^{2}\right)}
F
P
=
P
S
{\displaystyle FP={\frac {P}{S}}}
cos
φ
=
P
1
S
1
{\displaystyle \cos \varphi ={\frac {P_{1}}{S_{1}}}}
La tension est définit par :
u
(
t
)
{\displaystyle u(t)}
tel que :
u
(
t
)
=
U
2
sin
ω
t
{\displaystyle u(t)=U{\sqrt {2}}\sin \omega t}
Avec :
U = 230 V
ω
=
2
π
f
{\displaystyle \omega =2\pi f}
f = 50 Hz
Le courant est définit par :
i
(
t
)
{\displaystyle i(t)}
tel que :
i
(
t
)
=
{
I
2
sin
(
ω
t
)
si
k
π
<
θ
<
k
π
+
α
0
si
k
π
+
α
<
θ
<
(
k
+
1
)
π
{\displaystyle i(t)={\begin{cases}I{\sqrt {2}}\sin \left(\omega t\right)&{\mbox{si }}k\pi <\theta <k\pi +\alpha \\0&{\mbox{si }}k\pi +\alpha <\theta <\left(k+1\right)\pi \end{cases}}}
Avec :
θ
=
ω
t
{\displaystyle \theta =\omega t}
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
U
=
R
×
I
{\displaystyle U=R\times I}
Étude d'une commande
[
π
2
−
α
;
π
2
+
α
]
+
[
3
π
2
−
α
;
3
π
2
−
α
]
{\displaystyle \left[{\frac {\pi }{2}}-\alpha ;{\frac {\pi }{2}}+\alpha \right]+\left[{\frac {3\pi }{2}}-\alpha ;{\frac {3\pi }{2}}-\alpha \right]}
sur une charge résistive pure[ modifier | modifier le wikicode ]
Étude d'une commande
[
0
;
π
2
−
α
]
+
[
π
2
+
α
;
3
π
2
−
α
]
+
[
3
π
2
+
α
;
2
π
]
{\displaystyle \left[0;{\frac {\pi }{2}}-\alpha \right]+\left[{\frac {\pi }{2}}+\alpha ;{\frac {3\pi }{2}}-\alpha \right]+\left[{\frac {3\pi }{2}}+\alpha ;2\pi \right]}
sur une charge résistive pure[ modifier | modifier le wikicode ]