Aller au contenu

Nombre entier relatif/Produit et division

Leçons de niveau 8
Une page de Wikiversité, la communauté pédagogique libre.
Début de la boite de navigation du chapitre
Produit et division
Icône de la faculté
Chapitre no 4
Leçon : Nombre entier relatif
Chap. préc. :Addition et soustraction
Chap. suiv. :Sommaire

Exercices :

Produit et division
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Nombre entier relatif : Produit et division
Nombre entier relatif/Produit et division
 », n'a pu être restituée correctement ci-dessus.

Cas du produit de deux nombres

[modifier | modifier le wikicode]

Règle des signes

[modifier | modifier le wikicode]

Cette règle peut être résumée par le tableau suivant :

Signe du premier facteur
+ -
Signe du deuxième facteur + + -
- - +
Début de l'exemple
Fin de l'exemple


Produits particuliers

[modifier | modifier le wikicode]

Pour tout nombre relatif a

  • est toujours positif
Début de l'exemple
Fin de l'exemple


Inverse d’un nombre relatif

[modifier | modifier le wikicode]


Début de l'exemple
Fin de l'exemple


Panneau d’avertissement

Il ne faut pas confondre « inverse » et « opposé » :

  • L’opposé de 2 est -2.
  • L’inverse de 2 est 0,5.
Début d’un théorème
Fin du théorème


Début de l'exemple
Fin de l'exemple

Inverse et division

[modifier | modifier le wikicode]

Calculons :

Donc multiplier par 0,5 revient à diviser par 2, car 2 est l’inverse de 0,5.

Début d’un théorème
Fin du théorème


Exercices :

Transformer en multiplications les calculs ci-dessous à l’exemple du premier calcul :

Quotient de deux nombres relatifs

[modifier | modifier le wikicode]

Règle des signes

[modifier | modifier le wikicode]

Comme un nombre et son inverse ont le même signe, la règle des signes pour la division sera la même que celle pour la multiplication.

Début de l'exemple
Fin de l'exemple


Quotients particuliers

[modifier | modifier le wikicode]