Aller au contenu

Modélisation : Processus de méthode d'analyse harmonique

Une page de Wikiversité, la communauté pédagogique libre.
« Tout est lié à Tout «

La modéIisation est recherchée et sert à l'extrapolation.

Soit elle est stable et c'est facile alors d'extrapoler, soit elle évolue anachroniquement ,ce qui fait qu'une modélisation des paramètres du modèle est nécessaire.
Ce processus est répétitif en cascade, et une modélisation aval des paramètres amont de la modélisation amont peut se faire. Qui fait apparaître les paramètres aval. Ceci autant de fois qu'il faut afin d'épurer l'évolution des données et la rendre lisible, analysable, prévisible.

Il existe peu de méthodes d'extrapolation poussée, et aucune générale.

Certaines sont construites à partir de modèles de régression.

La régression linéaire avec des limites d'erreur.
Les régressions monomiales et polynomiales pures
Les régressions exponentielles.

D'autres à partir de transformations et et décompositions avec leurs limites propres et leur domaine d'application :

Type 1 : harmoniques

Les transformées de Fourier dont celle généralisée.
Les analyses par ondelettes dont celle de Daubechies.

Type 2 : quelconques

L'extrapolation de Lagrange
Analyse spectrale
L'extrapolation de Richardson

Type 3 : statistique

Filtre de Kalman
Moyenne glissante dans l'analyse des variations saisonnières

Type 4 : **** (à vous) Le calcul de la somme des écarts des carrés, et la covariance, restent les facteurs-tests déterminants qui mesurent l'écart du modèle au réel.

On s'oriente vers des analyses de type superposition de calques de fonctions de différentes nature.