Aller au contenu

Fraction/Division

Leçons de niveau 8
Une page de Wikiversité, la communauté pédagogique libre.
Début de la boite de navigation du chapitre
Division
Icône de la faculté
Chapitre no 4
Leçon : Fraction
Chap. préc. :Multiplication
Chap. suiv. :Simplification
fin de la boite de navigation du chapitre
En raison de limitations techniques, la typographie souhaitable du titre, « Fraction : Division
Fraction/Division
 », n'a pu être restituée correctement ci-dessus.

Inverse d’une fraction

[modifier | modifier le wikicode]

Exemple : Calculer



est donc l'inverse de

est donc l'inverse de

Pour trouver l'inverse d’une fraction, il suffit donc d'échanger son numérateur et son dénominateur.

Début d’un théorème
Fin du théorème


Faites des exercices pour apprendre à calculer des inverses

[modifier | modifier le wikicode]

Division de fractions

[modifier | modifier le wikicode]

L'inverse de 4 est

Calculons :

Théorème : diviser par un nombre revient à multiplier par son inverse

[modifier | modifier le wikicode]
Début d’un théorème
Fin du théorème


Exercice: division de deux fractions

[modifier | modifier le wikicode]

Calculer sous forme de fraction en appliquant le théorème :

Que penser de la règle : diviser deux fractions entre elles revient à diviser les numérateurs entre eux et les dénominateurs entre eux ?

[modifier | modifier le wikicode]

Il suffit pour cela d'écrire cette opération :
​ Or, on sait que diviser par un nombre (s'il est non nul), revient à multiplier par son inverse. On peut donc écrire : , puis :
.

Enfin, comme , on a :
, ou

Cette règle est donc vérifiée (vraie).