Leçons de niveau intermédiaire

Football/Pari 1N2

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Début de la boite de navigation du chapitre
Pari 1N2
Icône de la faculté
Chapitre no 3
Leçon : Football
Chap. préc. :Règles
fin de la boite de navigation du chapitre
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Football : Pari 1N2
Football/Pari 1N2
 », n'a pu être restituée correctement ci-dessus.

Position du problème[modifier | modifier le wikicode]

On analyse ici l'aspect mathématique des paris 1N2, par exemple des paris en ligne, on l’on parie soit sur la victoire l'équipe 1, soit sur le match nul, soit sur la victoire de l'équipe 2.

Le pari se présente sous la forme de trois cotes, par exemple :

  • Équipe 1 : 3,35
  • Match nul : 3,25
  • Équipe 2 : 1,90

Ces cotes signifient que pour une mise de 1 €, on gagne :

  • 3,35 € dans le cas d'une victoire de l'équipe 1
  • 3,25 € dans le cas d'une égalité
  • 1,90 € dans le cas d'une victoire de l'équipe 2

Compte tenu de la mise de 1€ le profit sera donc :

  • 2,35 € dans le cas d'une victoire de l'équipe 1
  • 2,25 € dans le cas d'une égalité
  • 0,90 € dans le cas d'une victoire de l'équipe 2

Le principe général est donc que plus la cote est élevée, moins la probabilité de gagner est importante, et réciproquement.

Mais soyons plus précis :

  • y a-t-il une formule mathématique précise reliant cotes et probabilité ?
  • Peut-on savoir exactement, à partir des cotes, combien le bookmaker garde pour lui en moyenne par pari ?

Notations[modifier | modifier le wikicode]

Pour obtenir des résultats généraux, on note :

  • la cote de l'équipe 1
  • la cote du match nul
  • la cote de l'équipe 2
  • la probabilité d'une victoire de l'équipe 1
  • la probabilité d'un match nul
  • la probabilité d'une victoire de l'équipe 2

Hypothèse de fiabilité des cotes[modifier | modifier le wikicode]

Dans ce qui suit on suppose que les cotes, déterminées par le nombre de paris, fournissent une vision fiable des probabilités.

Espérances des gains[modifier | modifier le wikicode]

L'espérance de gain d'une personne ayant parié sur l'équipe 1 sera donc :

De même :

et :


Cas particulier du pari gratuit[modifier | modifier le wikicode]

Dans le cas particulier d'un pari gratuit, c'est-à-dire dans les cas où le bookmaker ne garde rien pour lui, les espérances de gain sont nulles, on a donc :

les probabilités sont donc dans ce cas inversement proportionnelles aux cotes.

Hypothèse d'un pari équitable[modifier | modifier le wikicode]

On dira que le pari est équitable si aucune éventualité n'est privilégiée par le bookmaker.

Son espérance de gain (l'opposée de celle du parieur) dans le cas d'une victoire de l'équipe 1

sera donc égale à et .

Notre hypothèse se traduit donc par :

Naïvement, on peut penser que le bookmaker aura tendance à "parier" sur le résultat le plus probable,

en faisant baisser sa cote sur celui-ci.

Mais alors la cote la plus basse n'interessera plus les parieurs,

qui verront une meilleure affaire dans les autres résultats.

En fait, ce qui détermine l'avis du parieur, ce sont les rapports des cotes qui sont

dans le cas du pari gratuit inverses aux rapport des probabilités.

Pour que le pari paraisse équitable, il faut donc que cette propriété reste vrai, ce qui est le cas

dans le cas de notre hypothèse de pari équitable, comme nous allons le montrer maintenant.

Calcul des probabilités dans l'hypothèse d'un pari équitable[modifier | modifier le wikicode]

Avec , on a :

et on obtient par soustraction des équations :

donc

et

et .

Le pari parait donc équitable au parieur.


Avec , et en utilisant les rapports précédents, on obtient :

Et de même :

Calcul de l'espérance dans l'hypothèse d'un pari équitable[modifier | modifier le wikicode]

On en déduit l'esperance du parieur :


Conclusion :que valent nos hypothèses ?[modifier | modifier le wikicode]

Nous avons été amenés à formuler deux hypothèses pour pouvoir faire des calculs :

  • l'hypothèse de fiabilité des cotes : les cotes donnent une bonne vision des probabilités.

Or les cotes ne peuvent pas comme dans le pari gratuit être inversement proportionnelles aux probabilités, sinon le bookmaker ne gagnerait rien.

La seule propriété du pari gratuit qui peut donc être conservé, c’est que les cotes restent

dans des rapports inverses aux probabilités.

Alors elles auront l'air fiables.

Or on a vu que dans le cas de l'équitabilité du pari, et seulement dans ce cas, les cotes restent

dans des rapports inverses aux probabilités.

donc notre seconde hypothèse d'équitabilité, qui peut paraitre forte,

se ramène en fait à l'hypothèse faible de fiabilité des cotes.

Pour finir, signalons qu'un parieur sensé ne pariera sur que sur des cotes qui lui paraisse fiables.

Sinon il modifiera son pari dans un sens qui ramenera les cotes vers la fiabilité.

Les cotes vont donc s'équilibrer vers la fiabilité naturellement, et donc également vers l'équitabilité.

Application numérique[modifier | modifier le wikicode]

Dans le cas des cotes indiquées au départ

  • Équipe 1 : 3,35
  • Match nul : 3,25
  • Équipe 2 : 1,90

On a :

et

Le bookmaker gagne donc presque 12 centimes sur chaque Euro parié.