Fiche mémoire sur un formulaire de changements de variables en calcul intégral
En raison de limitations techniques, la typographie souhaitable du titre, «
Fiche : Formulaire
Changement de variable en calcul intégral/Fiche/Formulaire », n'a pu être restituée correctement ci-dessus.
Cette fiche est un résumé de la leçon.
Rappelons tout d’abord la formule du changement de variable en calcul intégral :
.
Considérons l’intégrale :
.
1er cas : Si l’expression f(x)dx reste invariante lorsqu’on remplace x par –x, on pose :
.
2eme cas : Si l’expression f(x)dx reste invariante lorsqu’on remplace x par π – x, on pose :
.
3eme cas : Si l’expression f(x)dx reste invariante lorsqu’on remplace x par x + π, on pose :
.
Si les règles de Bioche ne s'appliquent pas, on pose :
.
On a alors :
.
Intégrales de fonctions de la forme :
.
On pose :
.
On a alors :
.
Intégrales de fonctions de la forme :
.
On pose :
.
On a alors :
.
Intégrales de fonctions de la forme :
.
On pose :
.
On a alors :
.
Ces intégrales sont de la forme :
On pose :
.
En particulier :
Ces intégrales sont de la forme :
.
On pose :
L'intégrale est de la forme :
- .
On pose alors :
- .
Autre choix possible :
- .
L'intégrale est de la forme :
- .
On pose alors :
- .
Autre choix possible :
- .
L'intégrale est de la forme :
- .
On pose alors :
- .
Autre choix possible :
- .