Leçons de niveau 18

Arbres de décision/Conception

Une page de Wikiversité.
Sauter à la navigation Sauter à la recherche
Début de la boite de navigation du chapitre
Conception
Icône de la faculté
Chapitre no 4
Leçon : Arbres de décision
Chap. préc. :Contexte d'utilisation
Chap. suiv. :Représentations diverses
fin de la boite de navigation du chapitre
Icon falscher Titel.svg
En raison de limitations techniques, la typographie souhaitable du titre, « Arbres de décision : Conception
Arbres de décision/Conception
 », n'a pu être restituée correctement ci-dessus.

Pourquoi mettre en place un arbre de décision ?[modifier | modifier le wikicode]

Le but de la construction d’un arbre de décision est de déterminer les meilleurs attributs à placer à chaque nœud, afin d’obtenir un arbre le plus petit possible et qu’il permette d’en retirer les meilleures prédictions.

Il est nécessaire de connaitre les étapes de la conception d’un arbre de décision. Comment fait-on pour mettre en place et pour mettre en application cet outil ?

Conception arbres de decision.jpg

Confection à partir d'un algorithme[modifier | modifier le wikicode]

À partir d’un ensemble d’observations T = {(x, y)}, on souhaite construire un arbre de décision prédisant l’attribut y en fonction de nouvelles instances x. Pour ce faire, il existe essentiellement deux familles d’algorithmes à ce jour : les arbres de Quinlan et les arbres CART. Les deux approches peuvent être schématisés comme ci-dessous :

 ArbreDecision(T)
    si "condition d'arret"
        retourner feuille(T)
    sinon 
        choisir le "meilleur" attribut i entre 1 et m
        pour chaque valeur v de l'attribut i
            T[v] = {(x, y) de T tels que x_i = v}
            t[v] = ArbreDecision(T[v])
        fin pour
        retourner noeud(i, {v -> t[v]})
    fin si

Il est donc nécessaire, avant toute chose, d'élaborer l'algorithme pour la mise en application de l'arbre décisionnel.

Finition à partir d'un tableau récapitulatif[modifier | modifier le wikicode]

Ensuite, pour mettre sur pied un arbre de décision, il est nécessaire d’élaborer un tableau, récapitulant toutes les questions qu’il faut se poser, les conséquences qui découlent des réponses à ces questions et de mettre en avant la réponse qui permettra de planifier au mieux notre dessein (base d’apprentissage).

Finalisation d'un arbre de décision[modifier | modifier le wikicode]

Dès que le tableau regroupant toutes les options et solutions est finalisé,l'arbre de décision peut être élaboré.

Decision Tree on Uploading Imagesv2.svg

Une fois l’arbre construit, il faut effectuer un test sur l’ensemble des données (base de test).