Aller au contenu

Signaux physiques (PCSI)/Exercices/Oscillateurs amortis : circuit R L C série et oscillateur mécanique amorti par frottement visqueux

Leçons de niveau 14
Une page de Wikiversité, la communauté pédagogique libre.
Oscillateurs amortis : circuit R L C série et oscillateur mécanique amorti par frottement visqueux
Image logo représentative de la faculté
Exercices no28
Leçon : Signaux physiques (PCSI)
Chapitre du cours : Oscillateurs amortis : circuit R L C série et oscillateur mécanique amorti par frottement visqueux

Exercices de niveau 14.

Exo préc. :Circuits linéaires du premier ordre : stockage et dissipation d'énergie
Exo suiv. :Oscillateurs amortis : régime sinusoïdal forcé, impédance complexe
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Oscillateurs amortis : circuit R L C série et oscillateur mécanique amorti par frottement visqueux
Signaux physiques (PCSI)/Exercices/Oscillateurs amortis : circuit R L C série et oscillateur mécanique amorti par frottement visqueux
 », n'a pu être restituée correctement ci-dessus.




Circuit linéaire constitué d'« un condensateur en série avec le modèle parallèle d'une bobine réelle » soumis à un échelon de tension, réponse en intensité de courant traversant le circuit

[modifier | modifier le wikicode]
Schéma d'un circuit constitué d'un condensateur en série avec l'association d'une bobine parfaite en parallèle sur un conducteur ohmique, l'ensemble étant soumis à un échelon de tension, réponse en intensité du courant traversant le circuit

......On se propose de déterminer la réponse en intensité du courant traversant le circuit constitué d'un condensateur de capacité en série avec l'association d'une bobine parfaite d'inductance propre en parallèle sur un conducteur ohmique de résistance , l'ensemble étant soumis à un échelon de tension établi à partir de et d'amplitude (voir ci-contre) ;

......avant la fermeture de l'interrupteur réalisée à , toutes les grandeurs électriques (tension et intensité) du circuit passif sont nulles.

Établissement de l'équation différentielle en i(t), intensité du courant traversant le circuit linéaire soumis à un échelon de tension

[modifier | modifier le wikicode]

......Établir, pour tout , l'équation différentielle en , intensité du courant de charge du condensateur, quand le circuit est soumis à l'échelon de tension d'amplitude .

À partir de la nature de la discontinuité de l'excitation, induction de celle des discontinuités (éventuelles) initiales de l'intensité i(t) et de son taux horaire de variation (di/dt)(t) puis détermination des C.I. par utilisation des propriétés de continuité des grandeurs électriques dans un circuit résistif

[modifier | modifier le wikicode]

......Induire, de la nature de la discontinuité de l'excitation en , celles de et de puis,

......déterminer les valeurs initiales et par la méthode adaptée à la nature de la discontinuité (éventuelle).

Détermination des réponses transitoires en intensité du courant suivant la valeur de la résistance et tracé du graphe de i(t) en fonction de t pour une résistance supérieure à la résistance critique

[modifier | modifier le wikicode]

......En déduire, pour , les réponses en , intensité du courant traversant le circuit soumis l'échelon de tension d'amplitude suivant les valeurs de , on mettra en évidence une résistance critique que l'on exprimera en fonction de et .

......Donner l'allure du graphe de en fonction de dans le cas où .

Circuit linéaire constitué d'« une bobine parfaite en série avec un conducteur ohmique de résistance R et une association parallèle d'un condensateur parfait sur un conducteur ohmique de même résistance R » soumis à un échelon de tension, réponse en intensité de courant traversant le circuit

[modifier | modifier le wikicode]
Schéma d'un circuit constitué d'une bobine parfaite en série avec un conducteur ohmique de résistance R et l'association d'un condensateur en parallèle sur un conducteur ohmique de même résistance R, l'ensemble étant soumis à un échelon de tension, réponse en intensité du courant traversant le circuit

......On se propose de déterminer la réponse en intensité du courant traversant le circuit constitué d'une bobine parfaite d'inductance propre en série avec un conducteur ohmique de résistance et l'association d'un condensateur de capacité en parallèle sur un conducteur ohmique de même résistance , l'ensemble étant soumis à un échelon de tension établi à partir de et d'amplitude (voir ci-contre) ;

......avant la fermeture de l'interrupteur réalisée à , toutes les grandeurs électriques (tension et intensité) du circuit passif sont nulles.

Établissement de l'équation différentielle en i(t), intensité du courant traversant le circuit linéaire soumis à un échelon de tension

[modifier | modifier le wikicode]

......Établir, pour tout , l'équation différentielle en , intensité du courant traversant la bobine, quand le circuit est soumis à l'échelon de tension d'amplitude .

À partir de la nature de la discontinuité de l'excitation, induction de celle des discontinuités (éventuelles) initiales de l'intensité i(t) et de son taux horaire de variation (di/dt)(t) puis détermination des C.I. par utilisation des propriétés de continuité des grandeurs électriques dans un circuit résistif

[modifier | modifier le wikicode]

......Induire, de la nature de la discontinuité de l'excitation en , celles de et de puis,

......déterminer les valeurs initiales et par la méthode adaptée à la nature de la discontinuité (éventuelle).

Détermination de la réponse transitoire en intensité du courant dans le cas où les dipôles L R série et R C parallèle ont même constante de temps et tracé du graphe de i(t) en fonction de t

[modifier | modifier le wikicode]

......Supposant que l'inductance propre de la bobine et la capacité du condensateur sont telles que les dipôles L R série et R C parallèle ont même constante de temps notée , réécrire l'équation différentielle en pour tout t sous forme canonique[10] ;

......en déduire, pour , la réponse en , intensité du courant traversant le circuit soumis l'échelon de tension d'amplitude , en fonction de , , et l'instant .

......Donner l'allure du graphe de en fonction de .

Circuit de Wien court-circuité, le condensateur de l'association série étant initialement chargé et celui de l'association parallèle initialement déchargé, réponse en tension aux bornes de l'association parallèle

[modifier | modifier le wikicode]
Schéma d'un circuit de Wien[13] court-circuité c'est-à-dire formé d'un R' C' série fermé sur un R C parallèle, le condensateur de capacité C' étant initialement chargé et celui de capacité C étant déchargé

......À l'aide des conducteurs ohmiques de résistance et ainsi que des condensateurs parfaits de capacité et , on réalise le montage ci-contre appelé circuit de Wien[13] court-circuité.

......On ferme l'interrupteur à , le condensateur de l'association série de capacité étant initialement chargé et celui de l'association parallèle de capacité déchargé.

......Pour faire les applications numériques nous nous placerons dans le cas où les deux résistances sont égales et les deux capacités aussi, ceci permettant de poser , et on prendra et .

......À l'instant on note la tension instantanée aux bornes du condensateur initialement chargé de capacité et la tension instantanée aux bornes du condensateur initialement déchargé de capacité , le but de cet exercice étant de déterminer l'évolution de la tension en fonction du temps .

Détermination des valeurs à l'instant 0+ et au bout d'un temps infini de v(t) et de sa dérivée temporelle

[modifier | modifier le wikicode]

......À partir de considérations physiques préciser les valeurs de la tension et de sa dérivée temporelle lorsque et quand .

Établissement de l'équation différentielle en v(t), tension aux bornes du dipôle R C parallèle

[modifier | modifier le wikicode]

......Établir l'équation différentielle en , tension aux bornes du dipôle R C parallèle, pour tout instant .

Résolution de l'équation différentielle en v(t), tension aux bornes du dipôle R C parallèle, puis tracé de son graphe en fonction du temps t et détermination de l'instant pour lequel v(t) est maximale

[modifier | modifier le wikicode]

......Exprimer sachant que , puis

......donner le graphe correspondant et

......déterminer le temps au bout duquel passe par un maximum.

Établissement du courant dans un circuit bouchon quand ce dernier est soumis, à travers un conducteur ohmique, à un échelon de tension

[modifier | modifier le wikicode]
Schéma d'un circuit constitué d'un conducteur ohmique en série avec un circuit bouchon (association d'une bobine parfaite en parallèle sur un condensateur), l'ensemble étant soumis à un échelon de tension, réponse en intensité du courant traversant le circuit

......On se propose de déterminer la réponse en intensité du courant traversant le circuit constitué d'un conducteur ohmique de résistance en série avec l'association d'un condensateur de capacité en parallèle sur une bobine parfaite d'inductance propre (association parallèle appelée circuit bouchon), l'ensemble étant soumis à un échelon de tension établi à partir de et d'amplitude (voir ci-contre) ;

......on pose [25] et [26], la résistance étant choisie suffisamment grande pour que soit inférieur à c'est-à-dire  ;

......avant la fermeture de l'interrupteur réalisée à , toutes les grandeurs électriques (tension et intensité) du circuit passif sont nulles.

Établissement de l'équation différentielle en i(t), intensité du courant traversant le circuit linéaire soumis à un échelon de tension

[modifier | modifier le wikicode]

......Établir, pour tout , l'équation différentielle en , intensité du courant traversant le circuit bouchon, quand le circuit complet est soumis à l'échelon de tension d'amplitude .

À partir de la nature de la discontinuité de l'excitation, induction de celle des discontinuités (éventuelles) initiales de l'intensité i(t) et de son taux horaire de variation (di/dt)(t) puis détermination des C.I. par utilisation des propriétés de continuité des grandeurs électriques dans un circuit résistif

[modifier | modifier le wikicode]

......Induire, de la nature de la discontinuité de l'excitation en , celles de et de puis,

......déterminer les valeurs initiales et par la méthode adaptée à la nature de la discontinuité (éventuelle).

Détermination de la réponse transitoire en intensité du courant et tracé du graphe de i(t) en fonction de t

[modifier | modifier le wikicode]

......Réécrire l'équation différentielle en pour tout t sous forme canonique[29] ;

......en déduire, pour , la réponse en , intensité du courant traversant le circuit complet soumis l'échelon de tension d'amplitude , en fonction de , , , et l'instant .

......Donner l'allure du graphe de en fonction de .

Détermination expérimentale du cœfficient de viscosité d'un fluide à partir de la période propre et de la pseudo-période d'un P.E.V.A. dont le solide se déplace dans le fluide précité

[modifier | modifier le wikicode]

......Une sphère de rayon et de masse est suspendue à un ressort de raideur et de longueur à vide .

......Déplacée dans un liquide de cœfficient de viscosité dynamique , la sphère est soumise, à l'instant , à une force de frottement fluide linéaire donnée par la formule de Stokes est la vitesse de la sphère au même instant .

Détermination de l'équation différentielle du mouvement de la sphère et expression de la pseudo-période

[modifier | modifier le wikicode]

......Écrire l'équation différentielle du mouvement de la sphère plongée dans le liquide et

......en déduire, dans l'hypothèse d'un régime pseudo-périodique, l'expression de la pseudo période .

Détermination du cœfficient de viscosité dynamique à partir de l'expression, entre autres, de la pseudo-période

[modifier | modifier le wikicode]

......En supposant les frottements fluides linéaires négligeables dans l'air, la période des oscillations y est mesurée égale à  ;

......déduire, de la pseudo-période et de la période dans l'air, le cœfficient de viscosité dynamique du liquide en fonction de , , et .

Décrément logarithmique d'un P.E.V.A. et détermination du cœfficient de frottement fluide entre le solide et le fluide dans lequel le premier se déplace

[modifier | modifier le wikicode]
Schéma de présentation du pendule élastique vertical amorti (P.E.V.A.)
Diagramme horaire de z' cote du solide d'un P.E.V.A. relativement à sa position d'équilibre en fonction du temps

......Un solide de masse est attaché à un ressort d'axe vertical, de raideur et de longueur à vide fixé au point fixe (voir figure ci-contre).

......En plus de son poids et de la force élastique du ressort, le solide est soumis à une force de frottement fluide , où est le vecteur vitesse instantané du solide à l'instant et une constante dite de « frottement fluide linéaire » dans les conditions de l'expérience.

......Un capteur fournit l'évolution, au cours du temps, de la cote du solide par rapport à sa position d'équilibre (voir figure ci-dessous).

Établissement de l'équation différentielle en z(t) cote du solide relativement à O, détermination de la cote à l'équilibre et de la loi de variation de z'(t) cote du solide relativement à sa position d'équilibre

[modifier | modifier le wikicode]

......Établir l'équation différentielle en cote du solide relativement à l'extrémité supérieure du ressort ;

......en déduire la position d'équilibre du solide c'est-à-dire sa cote à l'équilibre puis

......en déduire l'équation différentielle en cote du solide relativement à sa position d'équilibre[37].

Définition de la pulsation propre et du facteur de qualité du P.E.V.A.

[modifier | modifier le wikicode]

......Dans le but de faire une réduction canonique, définir, en fonction des données

  • la pulsation propre du P.E.V.A. ainsi que
  • son facteur de qualité puis

......réécrire l'équation différentielle en sous sa forme canonique.

Résolution de l'équation différentielle en z'(t)

[modifier | modifier le wikicode]

......Déterminer, par résolution de l'équation différentielle précédente, la loi de variation de en fonction du temps  ;

......préciser la pseudo-période en fonction de la période propre et du facteur de qualité .

Définition du décrément logarithmique et établissement de son expression en fonction du facteur de qualité

[modifier | modifier le wikicode]

......Montrer que le décrément logarithmique défini par est indépendant du temps et

......l'exprimer en fonction du facteur de qualité.

Comparaison des données expérimentales à la modélisation précédente

[modifier | modifier le wikicode]

......En utilisant les positions du solide à chaque passage au maximum, comparer les données expérimentales à la modélisation précédente ;

......Commenter les résultats obtenus et estimer à l'aide des données expérimentales le décrément logarithmique[44] ainsi que son incertitude de répétabilité (ou de type A)[45].

Par étude des données expérimentales estimation du facteur de qualité et de la pseudo-pulsation

[modifier | modifier le wikicode]

......Estimer à l'aide des données expérimentales le facteur de qualité [49] puis

......Estimer à l'aide des données expérimentales la pseudo-pulsation [50].

Déduction des résultats estimés précédents de la masse du solide et du cœfficient de frottement fluide linéaire entre le solide et le fluide

[modifier | modifier le wikicode]

......En déduire la valeur de la masse du solide et

......En déduire la valeur du cœfficient de frottement fluide linéaire entre le solide et le fluide.

Couplage de deux circuits L C série identiques par condensateur

[modifier | modifier le wikicode]
Schéma du couplage de deux circuits L C série identiques montés tous deux en parallèle sur un condensateur initialement chargé, les deux L C série étant initialement au repos

......À l'aide de deux circuits oscillants identiques L C série initialement au repos[56] on réalise un couplage entre eux par condensateur c'est-à-dire qu'on les monte parallèlement à un condensateur (voir schéma ci-contre), ce condensateur de capacité est initialement chargé, sa charge initiale étant égale à [57] ;

......nous supposons que l'instant de réalisation du couplage est pris comme origine des temps .

Établissement du système d'équations différentielles couplées en i1(t) et i2(t), respectivement intensité du courant circulant dans les circuits oscillants de gauche et de droite

[modifier | modifier le wikicode]

......Déterminer le système d'équations différentielles couplées en et , respectivement intensité du courant circulant dans les circuits oscillants de gauche et de droite[58].

Découplage du système d'équations différentielles couplées en i1(t) et i2(t)

[modifier | modifier le wikicode]

......Montrer que l'on découple le système en formant et , obtenant ainsi deux équations différentielles découplées[60]

  • en et
  • en .

Détermination des lois de variation de s(t) = i1(t) + i2(t) et de d(t) = i1(t) - i2(t) en fonction du temps t

[modifier | modifier le wikicode]

......Résoudre chaque équation différentielle découplée et pour en déduire les lois de variation de et de avec le temps .

Déduction, de ce qui précède, des lois de variation de i1(t) et de i2(t)

[modifier | modifier le wikicode]

......Déduire, des expressions de et de , celles de et de .

Interprétation énergétique du facteur de qualité d'un R L C série court-circuité, le condensateur étant initialement chargé et le conducteur ohmique étant de faible résistance

[modifier | modifier le wikicode]
Schéma d'un circuit R L C série fermé sur un interrupteur K, le condensateur étant initialement chargé et K étant fermé à l'instant t = 0

......Un circuit électrique est composé d'un interrupteur , d'un conducteur ohmique de résistance , d'un condensateur parfait de capacité initialement chargé sous la tension [61] et d'une bobine également parfaite d'inductance propre , le tout monté en série (voir figure ci-contre) ;

......on ferme l'interrupteur à l'instant .

Établissement de l'équation différentielle en charge q(t) du condensateur et de sa réduction canonique

[modifier | modifier le wikicode]

......Établir l'équation différentielle satisfaite par la charge du condensateur quand l'interrupteur est fermé ;

......définir, en fonction de , et ,

  • la pulsation propre et
  • le facteur de qualité du série, puis

......réécrire l'équation différentielle sous forme canonique.

......On se place pour la suite dans le cas d'un amortissement très faible correspondant à .

Détermination de la variation de la charge du condensateur en fonction du temps

[modifier | modifier le wikicode]

......Exprimer la variation de la charge du condensateur en fonction des données (on posera , des grandeurs canoniques et du temps.

Évaluation de la pseudo-période et de la durée du régime transitoire

[modifier | modifier le wikicode]

......Évaluer la pseudo-période , ainsi que l'ordre de grandeur de la durée du régime transitoire.

Tracé du diagramme horaire et du portrait de phase de la charge du condensateur

[modifier | modifier le wikicode]

......Représenter le diagramme horaire de la charge du condensateur ainsi que

......Représenter son portrait de phase.

Détermination de l'énergie stockée dans le L C série à l'instant t ainsi que le signe de son taux horaire de variation

[modifier | modifier le wikicode]

......Évaluer l'énergie contenue dans le circuit à l'instant .

......Que dire du signe de  ?

Détermination de la variation relative d'énergie perdue dans le L C série pendant une pseudo-période

[modifier | modifier le wikicode]

......Évaluer la variation relative d'énergie perdue dans le circuit pendant une pseudo-période soit .

Caractérisation énergétique du facteur de qualité

[modifier | modifier le wikicode]

......Déduire de ce qui précède une caractérisation énergétique du facteur de qualité dans le cas d'un régime pseudo-périodique très faiblement amorti.

Notes et références

[modifier | modifier le wikicode]
  1. 1,0 et 1,1 En effet écrire que l'on a même tension aux bornes de deux dipôles en parallèle est équivalent à une loi de maille.
  2. 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 et 2,12 Au sens des distributions.
  3. En effet .
  4. 4,0 et 4,1 Les doubles guillemets pour préciser que cette notion n'est pas définie en mathématiques mais qu'elle est néanmoins introduite dans le but de définir une échelle de discontinuités (introduction personnelle) voir la fin du paragraphe « évaluation de la dérivée temporelle seconde de la tension aux bornes de l'association série d'un interrupteur K et d'une source de tension parfaite de f.e.m. E lors de la fermeture de K et modélisation » sur la notion de « “ discontinuité de 3e espèce ” » [introduit au chap. 21 de la leçon « Outils mathématiques pour la physique (PCSI) »].
  5. 5,0 et 5,1 Présence d'un « double pic de Dirac inversé », dérivé du pic de Dirac d'impulsion unité.
  6. Et de l'interrupteur ouvert modélisant à .
  7. On pouvait aussi utiliser la méthode (hors programme) consistant à intégrer (au sens des distributions) l'équation différentielle écrite pour tout , celle-ci donnant ou car , étant discontinue de 1ère espèce la continuité des primitives de i(t) soit finalement compte-tenu de la valeur de
  8. 8,0 8,1 et 8,2 En se limitant à la détermination principale (c'est-à-dire comprise entre et de .
  9. 9,0 9,1 9,2 9,3 9,4 et 9,5 C'est-à-dire pour tout soit en particulier pour .
  10. La seule grandeur canonique intervenant étant la valeur commune des constantes de temps des dipôles L R série et R C parallèle.
  11. Comme la pulsation propre est on peut réécrire la pseudo-pulsation avec établissant que le cœfficient d'amortissement classique est tel que soit .
  12. En effet est en particulier égal à .
  13. 13,0 13,1 et 13,2 Max Wien (1866 - 1938) physicien allemand à qui on doit l'oscillateur à pont dit de Wien en 1891 et le "Löschfunkensender" (un générateur d'oscillations électromagnétiques légèrement amorties) entre 1906 et 1909 ; il eut l'idée d'un amplificateur électronique qu'il ne réalisa pas faute de moyens [ce fût William Hewlett (1913 - 2001), ingénieur américain en électronique, cofondateur de Hewlett-Packard, qui le réalisa en 1939].
  14. Le condensateur de capacité étant en convention récepteur.
  15. À faire réellement.
  16. Mais certaines étant très simples comme par exemple la tension aux bornes de l'interrupteur , le nombre d'inconnues et donc le nombre de relations nécessaires diminuera très sensiblement.
  17. Convention de décharge du condensateur de capacité .
  18. Convention générateur pour le condensateur de capacité .
  19. Convention de charge du condensateur de capacité .
  20. Convention récepteur pour le condensateur de capacité .
  21. En effet le 2nd membre de l'équation intégrée s'écrivant .
  22. En vérifiant qu'il s'agit bien d'un maximum du diagramme nécessitant et .
  23. L'expression conjuguée de l'expression irrationnelle est , on utilise alors que le produit de deux expressions irrationnelles conjuguées est rationnel c'est-à-dire ici .
  24. On vérifie effectivement car et
    ...On vérifie effectivement car ou car est une fonction sur , sa dérivée y étant négative.
  25. Pour l'instant il ne s'agit que d'une grandeur homogène à une pulsation, vraisemblablement la pulsation propre du circuit mais, si l'intuition est exacte, cela reste à vérifier.
  26. a donc la même homogénéité que , tous deux s'exprimant en .
  27. La règle étant d'utiliser la dernière relation avant la dérivation finale permettant d'aboutir à l'équation différentielle cherchée.
  28. On pouvait aussi utiliser la méthode (hors programme) consistant à intégrer (au sens des distributions) l'équation différentielle écrite pour tout , celle-ci donnant ou car d'une part , étant discontinue de 1ère espèce la continuité des primitives de i(t) et d'autre part, pour la même raison, soit finalement compte-tenu de la valeur de
  29. On vérifiera que seules les grandeurs réduites et interviennent, le cœfficient d'amortissement usuel étant remplacé par .
  30. Ce cœfficient d'amortissement est lié au cœfficient d'amortissement usuel par .
  31. En introduisant le cœfficient d'amortissement usuel on retrouve la forme usuelle de la pseudo-pulsation .
  32. Le 1er terme du 1er membre est nul par la 1ère C.I..
  33. La position d'équilibre est choisie comme origine de l'axe orienté vers le bas.
  34. 34,0 34,1 et 34,2 Relation fondamentale de la dynamique newtonienne ou 2e loi de Newtion.
  35. La force de Stokes proportionnelle à la vitesse de est nulle à l'équilibre.
  36. Cette relation à l'équilibre aurait pu également être obtenue en faisant , et (compte-tenu du choix de l'origine) dans l'équation différentielle précédemment trouvée la nullité du 1er membre de l'équation différentielle et par suite nécessairement la nullité du 2e membre soit effectivement .
  37. À cette étape on ne demande pas encore de faire une réduction canonique.
  38. On aurait obtenu le même résultat en écrivant que la somme des forces appliquées est nulle à l'équilibre soit ou, en projetant que , la relation suivante
  39. La 2e expression se déduisant de la 1ère en utilisant .
  40. Hypothèse en accord avec l'enregistrement donnée ci-dessus.
  41. En accord avec le résultat du cours « régime pseudo-périodique » si avec .
  42. et étant des constantes à déterminer à l'aide des C.I. qui ne sont pas précisées ici.
  43. Applicable pour tout et en particulier quand est maximale, dans ce cas le décrément logarithmique est le logarithme népérien du rapport des pseudo-amplitudes d'oscillations successives séparées d'une pseudo-période.
  44. Le meilleur estimateur d'une grandeur dont on fait une série de mesures est sa moyenne arithmétique .
  45. On définit l'écart-type expérimental sur une série de mesures de la grandeur précisant la dispersion de cette série autour de sa valeur moyenne par , mais l'incertitude de répétabilité (ou de type A) sur la grandeur lors d'une série de mesures devant traduire la dispersion de la valeur moyenne si on répétait un grand nombre de fois cette série de mesures, cette dispersion étant alors d'autant plus faible que le nombre de mesures est grand est estimée par l'écart-type expérimental sur la moyenne .
  46. La valeur moyenne est , l'écart entre la plus grande valeur et la valeur moyenne étant de représente alors que l'écart entre la valeur moyenne et la plus petite valeur étant de représente .
  47. Les valeurs des observations individuelles différant en raison des variations aléatoires des grandeurs d'influence, la variabilité des valeurs observées ou plus exactement leur dispersion autour de leur moyenne est appelée écart-type expérimental  ; ce dernier se calcule selon .
  48. Ayant effectué une série de mesures de la grandeur et défini la dispersion de la série autour de leur moyenne par l'écart-type expérimental , on cherche à définir la dispersion de la valeur moyenne si on répétait un grand nombre de fois cette série de mesures, la dispersion étant d'autant plus faible que le nombre de mesures est grand est estimée par l'écart-type expérimental sur la moyenne .
  49. 49,0 49,1 et 49,2 Si une grandeur est fonction d'une autre grandeur et que la mesure de est réalisée en faisant une série de mesures, le meilleur estimateur de étant la moyenne de ses mesures avec une incertitude de répétabilité (ou de type A) sur notée , on en déduit le meilleur estimateur de par avec une incertitude de répétabilité (ou de type A) sur égale à .
  50. 50,0 et 50,1 Dans le cas où l'estimation d'une mesure peut être difficilement obtenue en réalisant une série de mesures, il est nécessaire de remplacer l'incertitude de répétabilité (ou de type A) par une autre incertitude dite de résolution (ou de type B) ;
    ...pour arriver à exprimer l'incertitude de résolution (ou de type B) sous forme d'un écart-type, il faut recourir à des « lois de probabilité » [ces lois de probabilité définissent la variation de la probabilité d'une mesure sur l'intervalle , par exemple si on effectue une mesure d'abscisse à l'aide d'une règle graduée au et que cette mesure nous indique que l'abscisse est comprise entre et , il est souhaitable de considérer que toutes les valeurs entre et sont équiprobables d'où une densité de probabilité uniforme] et si la loi de probabilité choisie est uniforme l'incertitude de résolution (ou de type B) est .
  51. On pourrait, pour évaluer l'incertitude-type sur , procéder de même que pour le décrément logarithmique en déterminant les durées écoulées entre deux maxima successifs et en évaluant l'écart-type expérimental puis l'écart-type expérimental sur la moyenne mais nous allons procéder autrement.
  52. Car conduit à des erreurs relatives opposées et par suite des incertitudes relatives égales, les incertitudes étant nécessairement positives.
  53. Supposé parfaitement connue.
  54. Car conduit à des erreurs relatives de signes opposes dans un rapport de deux et par suite des incertitudes relatives dans un rapport de deux, les incertitudes étant nécessairement positives.
  55. Car conduit à une erreur relative sur opposée de la somme des erreurs relatives sur et sur soit et par suite une incertitude relative sur égale à la somme des incertitudes relatives sur et sur , les incertitudes étant nécessairement positives.
  56. C'est-à-dire que les condensateurs sont initialement déchargés et qu'il n'y a aucun courant circulant dans les bobines.
  57. On peut utiliser cette notation car dans cet exercice il ne sera pas question de facteur de qualité, de toute façon il n'y aurait aucune ambiguïté car un facteur de qualité est sans dimension alors que la charge initiale est évidemment en .
  58. 58,0 et 58,1 Le système est dit couplé parce que l'équation différentielle en , équation que l'on notera , a un deuxième membre dépendant de et l'équation différentielle en , équation que l'on notera , a un deuxième membre dépendant de .
  59. 59,0 et 59,1 En effet, quand est , l'interrupteur est équivalent à un court-circuit d'une part avec d'autre part et, quand est , la tension aux bornes de l'interrupteur doit compenser celle aux bornes du condensateur de capacité c'est-à-dire d'une part avec d'autre part.
  60. La méthode de découplage du système des deux équations différentielles linéaires à cœfficients réels constants est celle « par combinaison linéaire réelle », elle est exposée en détail dans le paragraphe « mise en pratique du découplage par combinaison linéaire » du chapitre de la leçon « Outils mathématiques pour la physique (PCSI) », mais
    ...ce n'est pas ce qui est fait ici : on propose les combinaisons linéaires réelles à utiliser [il est d'ailleurs possible de les deviner quand il s'agit simplement de somme et de différence (et souhaitable de le vérifier avant d'amorcer la méthode de recherche plus générale des combinaisons linéaires réelles d'où une grande simplification de la méthode.
  61. La tension aux bornes du condensateur étant définie comme la d.d.p. entre l'armature portant la charge et celle portant la charge .
  62. Le choix de sens + des tensions correspond à la convention générateur pour le conducteur ohmique et la bobine.
  63. En effet, quand est , l'interrupteur est équivalent à un court-circuit d'une part avec d'autre part et, quand est , la tension aux bornes de l'interrupteur (dans le sens + du courant) doit compenser celle aux bornes du condensateur de capacité c'est-à-dire d'une part avec d'autre part.
  64. En effet .
  65. En effet .
  66. En effet pour .
  67. Le facteur de qualité étant supposé très grand, le 1er terme du discriminant est très petit d'où le signe du discriminant.
  68. Ceci est en accord avec l'équation différentielle écrite pour tout t, l'excitation y étant discontinue de 1ère espèce à t = 0, la discontinuité de 1ère espèce se reporte sur et les primitives successives et sont continues.
  69. Correspondant à la 3e réduction canonique possible.
  70. Ainsi , la pseudo-pulsation en faisant un « D.L. à l'ordre 1 » en l'infiniment petit d'ordre 1 [voir chap. 14 de la leçon « Outils mathématiques pour la physique (PCSI) »] soit numériquement à près.
  71. La pseudo-période étant inversement proportionnelle à la pseudo-pulsation, ce résultat se déduit du D.L. en l'infiniment petit d'ordre 1 » [voir chap. 14 de la leçon « Outils mathématiques pour la physique (PCSI) »] précisant .
  72. Le 1er terme ayant une amplitude petite par rapport au 2e peut être supprimé.
  73. Cela revient à dire que pendant le temps de variation d'une période du cosinus l'amplitude peut être considérée comme constante d'où son absence de dérivation.
  74. La chaleur dissipée dans le conducteur ohmique devrait être notée mais on évite cette notation car est déjà utilisé pour le facteur de qualité.