Une page de Wikiversité, la communauté pédagogique libre.
En raison de limitations techniques, la typographie souhaitable du titre, «
Exercice : Calcul de limitesFonctions d'une variable réelle/Exercices/Calcul de limites », n'a pu être restituée correctement ci-dessus.
Calculer les cinq limites suivantes :
lim
x
→
0
(
1
+
sin
x
)
1
x
{\displaystyle \lim _{x\to 0}{(1+\sin x)^{\frac {1}{x}}}}
Solution
Par définition,
(
1
+
sin
x
)
1
x
=
e
f
(
x
)
{\displaystyle (1+\sin x)^{\frac {1}{x}}=\mathrm {e} ^{f(x)}}
avec
f
(
x
)
=
ln
(
1
+
sin
x
)
x
∼
x
→
0
sin
x
x
→
x
→
0
1
{\displaystyle f(x)={\frac {\ln(1+\sin x)}{x}}\,{\underset {x\to 0}{\sim }}\,{\frac {\sin x}{x}}\,{\underset {x\to 0}{\to }}\,1}
, donc
lim
x
→
0
(
1
+
sin
x
)
1
x
=
e
1
=
e
{\displaystyle \lim _{x\to 0}{(1+\sin x)^{\frac {1}{x}}}=\mathrm {e} ^{1}=\mathrm {e} }
.
lim
x
→
+
∞
(
1
+
x
)
1
x
{\displaystyle \lim _{x\to +\infty }{(1+x)^{\frac {1}{x}}}}
Solution
(
1
+
x
)
1
x
=
e
f
(
x
)
{\displaystyle (1+x)^{\frac {1}{x}}=\mathrm {e} ^{f(x)}}
avec
f
(
x
)
=
ln
(
1
+
x
)
x
∼
x
→
+
∞
ln
(
1
+
x
)
1
+
x
→
x
→
+
∞
0
{\displaystyle f(x)={\frac {\ln(1+x)}{x}}\,{\underset {x\to +\infty }{\sim }}\,{\frac {\ln(1+x)}{1+x}}\,{\underset {x\to +\infty }{\to }}\,0}
, donc
lim
x
→
+
∞
(
1
+
x
)
1
x
=
e
0
=
1
{\displaystyle \lim _{x\to +\infty }{(1+x)^{\frac {1}{x}}}=\mathrm {e} ^{0}=1}
.
lim
x
→
+
∞
x
3
(
(
x
+
1
)
2
3
−
(
x
−
1
)
2
3
)
{\displaystyle \lim _{x\to +\infty }{\sqrt[{3}]{x}}\left({\sqrt[{3}]{(x+1)^{2}}}-{\sqrt[{3}]{(x-1)^{2}}}\right)}
Solution
x
3
(
(
x
+
1
)
2
3
−
(
x
−
1
)
2
3
)
=
x
1
3
(
(
x
+
1
)
2
3
−
(
x
−
1
)
2
3
)
=
x
(
(
1
+
1
x
)
2
3
−
(
1
−
1
x
)
2
3
)
∼
x
→
+
∞
x
×
4
3
x
{\displaystyle {\begin{aligned}{\sqrt[{3}]{x}}\left({\sqrt[{3}]{(x+1)^{2}}}-{\sqrt[{3}]{(x-1)^{2}}}\right)&=x^{\frac {1}{3}}\left(\left(x+1\right)^{\frac {2}{3}}-\left(x-1\right)^{\frac {2}{3}}\right)\\&=x\left(\left(1+{\frac {1}{x}}\right)^{\frac {2}{3}}-\left(1-{\frac {1}{x}}\right)^{\frac {2}{3}}\right)\\&\,{\underset {x\to +\infty }{\sim }}\,x\times {\frac {4}{3x}}\end{aligned}}}
Donc
lim
x
→
+
∞
x
3
(
(
x
+
1
)
2
3
−
(
x
−
1
)
2
3
)
=
4
3
{\displaystyle \lim _{x\to +\infty }{\sqrt[{3}]{x}}\left({\sqrt[{3}]{(x+1)^{2}}}-{\sqrt[{3}]{(x-1)^{2}}}\right)={\frac {4}{3}}}
.
lim
x
→
(
−
1
)
+
π
−
arccos
x
x
+
1
{\displaystyle \lim _{x\to (-1)^{+}}{\frac {{\sqrt {\pi }}-{\sqrt {\arccos }}x}{\sqrt {x+1}}}}
.
Solution
lim
x
→
(
−
1
)
+
π
−
arccos
x
x
+
1
=
lim
y
→
0
+
π
−
π
−
y
cos
(
π
−
y
)
+
1
=
π
lim
y
→
0
+
1
−
1
−
y
/
π
1
−
cos
y
=
π
lim
y
→
0
+
y
/
(
2
π
)
y
2
/
2
=
1
2
π
{\displaystyle \lim _{x\to (-1)^{+}}{\frac {{\sqrt {\pi }}-{\sqrt {\arccos }}x}{\sqrt {x+1}}}=\lim _{y\to 0^{+}}{\frac {{\sqrt {\pi }}-{\sqrt {\pi -y}}}{\sqrt {\cos(\pi -y)+1}}}={\sqrt {\pi }}\lim _{y\to 0^{+}}{\frac {1-{\sqrt {1-y/\pi }}}{\sqrt {1-\cos y}}}={\sqrt {\pi }}\lim _{y\to 0^{+}}{\frac {y/(2\pi )}{\sqrt {y^{2}/2}}}={\frac {1}{\sqrt {2\pi }}}}
.
lim
x
→
+
∞
x
2
(
e
1
x
−
e
1
x
+
1
)
{\displaystyle \lim _{x\to +\infty }x^{2}\left(\mathrm {e} ^{\frac {1}{x}}-\mathrm {e} ^{\frac {1}{x+1}}\right)}
.
Calculer (en fonction de
a
,
b
>
0
{\displaystyle a,b>0}
) :
lim
x
→
+
∞
(
a
x
+
b
x
)
1
x
{\displaystyle \lim _{x\to +\infty }\left(a^{x}+b^{x}\right)^{\frac {1}{x}}}
;
lim
x
→
0
(
a
x
+
b
x
2
)
1
x
{\displaystyle \lim _{x\to 0}\left({\frac {a^{x}+b^{x}}{2}}\right)^{\frac {1}{x}}}
.
Solution
Soit
y
(
x
)
=
a
x
+
b
x
2
=
1
+
x
ln
a
+
ln
b
2
+
o
(
x
)
{\displaystyle y(x)={a^{x}+b^{x} \over 2}=1+x{\ln a+\ln b \over 2}+o(x)}
,
lim
x
→
0
ln
y
(
x
)
x
=
ln
a
+
ln
b
2
{\displaystyle \lim _{x\to 0}{\ln y(x) \over x}={\ln a+\ln b \over 2}}
donc
lim
x
→
0
(
a
x
+
b
x
2
)
1
x
=
a
b
{\displaystyle \lim _{x\to 0}\left({\frac {a^{x}+b^{x}}{2}}\right)^{\frac {1}{x}}={\sqrt {ab}}}
.
Soit
n
∈
N
∗
{\displaystyle n\in \mathbb {N} ^{*}}
fixé, calculer
lim
x
→
0
(
1
x
+
2
x
+
⋯
+
n
x
n
)
1
/
x
{\displaystyle \lim _{x\to 0}\left({\frac {1^{x}+2^{x}+\dots +n^{x}}{n}}\right)^{1/x}}
.
Solution
Quand
x
→
0
{\displaystyle x\to 0}
,
k
x
=
e
x
ln
k
=
1
+
x
ln
k
+
o
(
x
)
{\displaystyle k^{x}=\operatorname {e} ^{x\ln k}=1+x\ln k+o(x)}
donc
1
x
+
2
x
+
⋯
+
n
x
n
=
1
+
C
x
+
o
(
x
)
{\displaystyle {\frac {1^{x}+2^{x}+\dots +n^{x}}{n}}=1+Cx+o(x)}
avec
C
=
ln
1
+
ln
2
+
⋯
+
ln
n
n
=
ln
(
n
!
)
n
{\displaystyle C={\frac {\ln 1+\ln 2+\dots +\ln n}{n}}={\frac {\ln(n!)}{n}}}
et
1
x
ln
(
1
x
+
2
x
+
⋯
+
n
x
n
)
=
1
x
ln
(
1
+
C
x
+
o
(
x
)
)
→
C
{\displaystyle {\frac {1}{x}}\ln \left({\frac {1^{x}+2^{x}+\dots +n^{x}}{n}}\right)={\frac {1}{x}}\ln \left(1+Cx+o(x)\right)\to C}
,
si bien que
lim
x
→
0
(
1
x
+
2
x
+
⋯
+
n
x
n
)
1
/
x
=
e
C
=
(
n
!
)
n
{\displaystyle \lim _{x\to 0}\left({\frac {1^{x}+2^{x}+\dots +n^{x}}{n}}\right)^{1/x}=\operatorname {e} ^{C}=(n!)^{n}}
.
Calculer, suivant les valeurs de
α
∈
R
{\displaystyle \alpha \in \mathbb {R} }
:
lim
x
→
+
∞
(
x
2
+
1
)
α
−
(
x
+
1
)
2
α
{\displaystyle \lim _{x\to +\infty }(x^{2}+1)^{\alpha }-(x+1)^{2\alpha }}
Solution
(
x
2
+
1
)
α
−
(
x
+
1
)
2
α
=
x
2
α
[
(
1
+
1
x
2
)
α
−
(
1
+
1
x
)
2
α
]
=
x
2
α
[
1
+
o
(
1
x
)
−
(
1
+
2
α
x
+
o
(
1
x
)
)
]
∼
x
→
+
∞
−
2
α
x
2
α
−
1
{\displaystyle (x^{2}+1)^{\alpha }-(x+1)^{2\alpha }=x^{2\alpha }\left[\left(1+{\frac {1}{x^{2}}}\right)^{\alpha }-\left(1+{\frac {1}{x}}\right)^{2\alpha }\right]=x^{2\alpha }\left[1+o\left({\frac {1}{x}}\right)-\left(1+{\frac {2\alpha }{x}}+o\left({\frac {1}{x}}\right)\right)\right]\,{\underset {x\to +\infty }{\sim }}\,-2\alpha x^{2\alpha -1}}
donc la limite est :
{
0
si
α
<
1
2
−
1
si
α
=
1
2
−
∞
si
α
>
1
2
.
{\displaystyle {\begin{cases}0&{\text{si }}\alpha <{\frac {1}{2}}\\-1&{\text{si }}\alpha ={\frac {1}{2}}\\-\infty &{\text{si }}\alpha >{\frac {1}{2}}.\end{cases}}}
lim
x
→
+
∞
(
1
+
1
x
α
)
x
{\displaystyle \lim _{x\to +\infty }{\left(1+{\frac {1}{x^{\alpha }}}\right)^{x}}}
Calculer les trois limites suivantes (voir si nécessaire : Trigonométrie hyperbolique ) :
lim
x
→
0
+
x
arcosh
(
x
sinh
(
1
/
x
)
)
{\displaystyle \lim _{x\to 0^{+}}x\operatorname {arcosh} \left(x\sinh(1/x)\right)}
;
lim
x
→
+
∞
(
sinh
x
2
+
x
−
sinh
x
2
−
x
)
{\displaystyle \lim _{x\to +\infty }\left(\sinh {\sqrt {x^{2}+x}}-\sinh {\sqrt {x^{2}-x}}\right)}
;
lim
x
→
+
∞
(
cosh
x
+
1
−
cosh
x
)
1
x
{\displaystyle \lim _{x\to +\infty }\left(\cosh {\sqrt {x+1}}-\cosh {\sqrt {x}}\right)^{\frac {1}{\sqrt {x}}}}
.
Solution
sinh
u
u
∼
u
→
+
∞
e
u
2
u
→
u
→
+
∞
+
∞
{\displaystyle {\frac {\sinh u}{u}}\,{\underset {u\to +\infty }{\sim }}\,{\frac {\mathrm {e} ^{u}}{2u}}\,{\underset {u\to +\infty }{\to }}\,+\infty }
et
arcosh
v
∼
v
→
+
∞
ln
v
{\displaystyle \operatorname {arcosh} v\,{\underset {v\to +\infty }{\sim }}\,\ln v}
donc
arcosh
(
x
sinh
(
1
/
x
)
)
∼
x
→
0
+
ln
(
x
sinh
(
1
/
x
)
)
∼
x
→
0
+
ln
x
e
1
/
x
2
∼
x
→
0
+
1
x
{\displaystyle \operatorname {arcosh} \left(x\sinh(1/x)\right)\,{\underset {x\to 0^{+}}{\sim }}\,\ln \left(x\sinh(1/x)\right)\,{\underset {x\to 0^{+}}{\sim }}\,\ln {\frac {x\mathrm {e} ^{1/x}}{2}}\,{\underset {x\to 0^{+}}{\sim }}\,{\frac {1}{x}}}
,
c'est-à-dire
lim
x
→
0
+
x
arcosh
(
x
sinh
(
1
/
x
)
)
=
1
{\displaystyle \lim _{x\to 0^{+}}x\operatorname {arcosh} \left(x\sinh(1/x)\right)=1}
.
x
2
+
x
−
x
2
−
x
=
x
(
1
+
1
/
x
−
1
−
1
/
x
)
→
x
→
+
∞
1
{\displaystyle {\sqrt {x^{2}+x}}-{\sqrt {x^{2}-x}}=x\left({\sqrt {1+1/x}}-{\sqrt {1-1/x}}\right)\,{\underset {x\to +\infty }{\to }}\,1}
donc
e
x
2
+
x
−
e
x
2
−
x
=
e
x
2
−
x
(
e
x
2
+
x
−
x
2
−
x
−
1
)
∼
x
→
+
∞
e
x
2
−
x
(
e
−
1
)
→
x
→
+
∞
+
∞
{\displaystyle \mathrm {e} ^{\sqrt {x^{2}+x}}-\mathrm {e} ^{\sqrt {x^{2}-x}}=\mathrm {e} ^{\sqrt {x^{2}-x}}\left(\mathrm {e} ^{{\sqrt {x^{2}+x}}-{\sqrt {x^{2}-x}}}-1\right)\,{\underset {x\to +\infty }{\sim }}\,\mathrm {e} ^{\sqrt {x^{2}-x}}(\mathrm {e} -1)\,{\underset {x\to +\infty }{\to }}\,+\infty }
.
Par conséquent,
e
−
x
2
−
x
−
e
−
x
2
+
x
=
x
→
+
∞
o
(
e
x
2
+
x
−
e
x
2
−
x
)
{\displaystyle \mathrm {e} ^{-{\sqrt {x^{2}-x}}}-\mathrm {e} ^{-{\sqrt {x^{2}+x}}}\,{\underset {x\to +\infty }{=}}\,o\left(\mathrm {e} ^{\sqrt {x^{2}+x}}-\mathrm {e} ^{\sqrt {x^{2}-x}}\right)}
et
sinh
x
2
+
x
−
sinh
x
2
−
x
=
e
x
2
+
x
−
e
x
2
−
x
+
e
−
x
2
−
x
−
e
−
x
2
+
x
2
→
x
→
+
∞
+
∞
{\displaystyle \sinh {\sqrt {x^{2}+x}}-\sinh {\sqrt {x^{2}-x}}={\frac {\mathrm {e} ^{\sqrt {x^{2}+x}}-\mathrm {e} ^{\sqrt {x^{2}-x}}+\mathrm {e} ^{-{\sqrt {x^{2}-x}}}-\mathrm {e} ^{-{\sqrt {x^{2}+x}}}}{2}}\,{\underset {x\to +\infty }{\to }}\,+\infty }
.
x
+
1
−
x
=
x
(
1
+
1
/
x
−
1
)
∼
x
→
+
∞
1
2
x
→
x
→
+
∞
0
{\displaystyle {\sqrt {x+1}}-{\sqrt {x}}={\sqrt {x}}\left({\sqrt {1+1/x}}-1\right)\,{\underset {x\to +\infty }{\sim }}\,{\frac {1}{2{\sqrt {x}}}}\,{\underset {x\to +\infty }{\to }}\,0}
donc
e
x
+
1
−
e
x
=
e
x
(
e
x
+
1
−
x
−
1
)
∼
x
→
+
∞
e
x
2
x
→
x
→
+
∞
+
∞
{\displaystyle \mathrm {e} ^{\sqrt {x+1}}-\mathrm {e} ^{\sqrt {x}}=\mathrm {e} ^{\sqrt {x}}\left(\mathrm {e} ^{{\sqrt {x+1}}-{\sqrt {x}}}-1\right)\,{\underset {x\to +\infty }{\sim }}\,{\frac {\mathrm {e} ^{\sqrt {x}}}{2{\sqrt {x}}}}\,{\underset {x\to +\infty }{\to }}\,+\infty }
.
Par conséquent,
e
−
x
−
e
−
x
+
1
=
x
→
+
∞
o
(
e
x
+
1
−
e
x
)
{\displaystyle \mathrm {e} ^{-{\sqrt {x}}}-\mathrm {e} ^{-{\sqrt {x+1}}}\,{\underset {x\to +\infty }{=}}\,o\left(\mathrm {e} ^{\sqrt {x+1}}-\mathrm {e} ^{\sqrt {x}}\right)}
et
cosh
x
+
1
−
cosh
x
=
e
x
+
1
−
e
x
+
e
−
x
−
e
−
x
+
1
2
∼
x
→
+
∞
e
x
4
x
→
x
→
+
∞
+
∞
{\displaystyle \cosh {\sqrt {x+1}}-\cosh {\sqrt {x}}={\frac {\mathrm {e} ^{\sqrt {x+1}}-\mathrm {e} ^{\sqrt {x}}+\mathrm {e} ^{-{\sqrt {x}}}-\mathrm {e} ^{-{\sqrt {x+1}}}}{2}}\,{\underset {x\to +\infty }{\sim }}\,{\frac {\mathrm {e} ^{\sqrt {x}}}{4{\sqrt {x}}}}\,{\underset {x\to +\infty }{\to }}\,+\infty }
,
si bien que
ln
(
cosh
x
+
1
−
cosh
x
)
∼
x
→
+
∞
ln
(
e
x
4
x
)
=
x
−
ln
(
4
x
)
∼
x
→
+
∞
x
{\displaystyle \ln \left(\cosh {\sqrt {x+1}}-\cosh {\sqrt {x}}\right)\,{\underset {x\to +\infty }{\sim }}\,\ln \left({\frac {\mathrm {e} ^{\sqrt {x}}}{4{\sqrt {x}}}}\right)={\sqrt {x}}-\ln(4{\sqrt {x}})\,{\underset {x\to +\infty }{\sim }}\,{\sqrt {x}}}
et finalement,
lim
x
→
+
∞
(
cosh
x
+
1
−
cosh
x
)
1
x
=
lim
x
→
+
∞
exp
ln
(
cosh
x
+
1
−
cosh
x
)
x
=
exp
1
=
e
{\displaystyle \lim _{x\to +\infty }\left(\cosh {\sqrt {x+1}}-\cosh {\sqrt {x}}\right)^{\frac {1}{\sqrt {x}}}=\lim _{x\to +\infty }\exp {\frac {\ln \left(\cosh {\sqrt {x+1}}-\cosh {\sqrt {x}}\right)}{\sqrt {x}}}=\exp 1=\mathrm {e} }
.
Calculer les six limites suivantes :
lim
x
→
1
−
arcsin
x
tan
π
x
2
{\displaystyle \lim _{x\to 1^{-}}{\frac {\arcsin x}{\tan {\frac {\pi x}{2}}}}}
;
lim
x
→
0
cos
(
x
4
)
−
1
x
8
e
x
{\displaystyle \lim _{x\to 0}{\frac {\cos(x^{4})-1}{x^{8}\operatorname {e} ^{x}}}}
;
lim
x
→
0
(
sin
x
x
)
1
sin
x
{\displaystyle \lim _{x\to 0}\left({\frac {\sin x}{x}}\right)^{\frac {1}{\sin x}}}
;
lim
x
→
0
(
cos
a
x
)
cotan
b
x
{\displaystyle \lim _{x\to 0}(\cos ax)^{\operatorname {cotan} bx}}
;
lim
x
→
0
(
1
+
x
1
−
x
)
1
/
sin
x
{\displaystyle \lim _{x\to 0}\left({\frac {1+x}{1-x}}\right)^{1/\sin x}}
;
lim
x
→
π
/
4
(
tan
x
)
tan
(
2
x
)
{\displaystyle \lim _{x\to \pi /4}(\tan x)^{\tan(2x)}}
.
Solution
lim
x
→
1
−
arcsin
x
tan
π
x
2
=
π
/
2
+
∞
=
0
{\displaystyle \lim _{x\to 1^{-}}{\frac {\arcsin x}{\tan {\frac {\pi x}{2}}}}={\frac {\pi /2}{+\infty }}=0}
.
cos
(
x
4
)
−
1
x
8
e
x
∼
x
→
0
−
(
x
4
)
2
/
2
x
8
=
−
1
2
{\displaystyle {\frac {\cos(x^{4})-1}{x^{8}\operatorname {e} ^{x}}}\,{\underset {x\to 0}{\sim }}\,{\frac {-(x^{4})^{2}/2}{x^{8}}}=-{\frac {1}{2}}}
.
1
sin
x
ln
sin
x
x
∼
x
→
0
1
x
(
sin
x
x
−
1
)
∼
x
→
0
−
x
6
{\displaystyle {\frac {1}{\sin x}}\ln {\frac {\sin x}{x}}\,{\underset {x\to 0}{\sim }}\,{\frac {1}{x}}\left({\frac {\sin x}{x}}-1\right)\,{\underset {x\to 0}{\sim }}\,-{\frac {x}{6}}}
donc
lim
x
→
0
(
sin
x
x
)
1
sin
x
=
e
0
=
1
{\displaystyle \lim _{x\to 0}\left({\frac {\sin x}{x}}\right)^{\frac {1}{\sin x}}=\mathrm {e} ^{0}=1}
.
cotan
b
x
ln
(
cos
a
x
)
∼
x
→
0
cos
a
x
−
1
b
x
∼
x
→
0
−
a
2
x
2
b
{\displaystyle \operatorname {cotan} bx\ln(\cos ax)\,{\underset {x\to 0}{\sim }}\,{\frac {\cos ax-1}{bx}}\,{\underset {x\to 0}{\sim }}\,{\frac {-a^{2}x}{2b}}}
donc
lim
x
→
0
(
cos
a
x
)
cotan
b
x
=
e
0
=
1
{\displaystyle \lim _{x\to 0}(\cos ax)^{\operatorname {cotan} bx}=\mathrm {e} ^{0}=1}
.
ln
(
1
+
x
)
−
ln
(
1
−
x
)
∼
x
→
0
x
−
(
−
x
)
=
2
x
{\displaystyle \ln(1+x)-\ln(1-x)\,{\underset {x\to 0}{\sim }}\,x-(-x)=2x}
et
sin
x
∼
x
→
0
x
{\displaystyle \sin x\,{\underset {x\to 0}{\sim }}\,x}
donc
lim
x
→
0
(
1
+
x
1
−
x
)
1
/
sin
x
=
e
2
{\displaystyle \lim _{x\to 0}\left({\frac {1+x}{1-x}}\right)^{1/\sin x}=\mathrm {e} ^{2}}
.
Soient
x
=
(
π
/
4
)
+
y
{\displaystyle x=(\pi /4)+y}
avec
y
→
0
{\displaystyle y\to 0}
, donc
t
:=
tan
y
→
0
{\displaystyle t:=\tan y\to 0}
, alors
tan
(
2
x
)
ln
(
tan
x
)
=
tan
(
π
/
2
+
2
y
)
ln
(
tan
(
π
/
4
+
y
)
)
=
−
ln
(
tan
(
π
/
4
+
y
)
)
tan
(
2
y
)
=
−
ln
(
1
+
t
1
−
t
)
1
−
t
2
2
t
∼
0
−
2
t
1
−
t
1
−
t
2
2
t
=
−
(
1
+
t
)
→
−
1
{\displaystyle \tan(2x)\ln(\tan x)=\tan(\pi /2+2y)\ln(\tan(\pi /4+y))={-\ln(\tan(\pi /4+y)) \over \tan(2y)}=-\ln \left({1+t \over 1-t}\right){1-t^{2} \over 2t}\sim _{0}-{2t \over 1-t}{1-t^{2} \over 2t}=-(1+t)\to -1}
donc
(
tan
x
)
tan
(
2
x
)
→
1
/
e
{\displaystyle (\tan x)^{\tan(2x)}\to 1/\mathrm {e} }
.
« Limite de fonction (calculateur en ligne) » , sur dcode.fr