« Fonctions d'une variable complexe/Exercices/Fonctions holomorphes » : différence entre les versions

Une page de Wikiversité, la communauté pédagogique libre.
Contenu supprimé Contenu ajouté
→‎Exercice 3-3 : début de sol
Ligne 47 : Ligne 47 :
#
#
##Montrer que <math>R</math> se prolonge en une application continue de <math>\overline\C</math> dans <math>\overline\C</math>, que l'on notera encore <math>R</math>. Quelles sont les images des pôles <math>b_1,\dots,b_q</math> par le prolongement <math>R</math> ?
##Montrer que <math>R</math> se prolonge en une application continue de <math>\overline\C</math> dans <math>\overline\C</math>, que l'on notera encore <math>R</math>. Quelles sont les images des pôles <math>b_1,\dots,b_q</math> par le prolongement <math>R</math> ?
##Rappeler pourquoi deux fonctions <math>R_1</math> et <math>R_2</math> de la variable complexe qui coïncident en tout point d'un ensemble infini de <math>\overline\C</math>, coïncident partout sur <math>\overline\C</math>.
##Rappeler pourquoi deux fractions rationnelles <math>R_1</math> et <math>R_2</math> qui coïncident en tout point d'un ensemble infini de <math>\C</math>, coïncident partout sur <math>\C</math>.
##:''Dans toute la suite'', on suppose que <math>R</math> est une fraction rationnelle de la variable complexe <math>z</math> vérifiant la propriété suivante :
##:''Dans toute la suite'', on suppose que <math>R</math> est une fraction rationnelle de la variable complexe <math>z</math> vérifiant la propriété suivante :
##:<math>(*)\qquad|R(z)|=1</math> si <math>|z|=1</math>.
##:<math>(*)\qquad|R(z)|=1</math> si <math>|z|=1</math>.
Ligne 65 : Ligne 65 :
#
#
##<math>\lim_{b_i}R=\infty</math>.
##<math>\lim_{b_i}R=\infty</math>.
##Si deux fractions rationnelles <math>R_1=\frac{P_1}{Q_1}</math> et <math>R_1=\frac{P_1}{Q_1}</math> coïncident sur un ensemble infini alors le polynôme <math>P_1Q_2-P_2Q_1</math> s'annule sur cet ensemble donc il est nul, si bien que <math>R_1=R_2</math>.
##Rectifier l'énoncé.
#<math>h(z)=\frac{az+b}{cz+d}</math> avec <math>ad-bc\ne0</math> et sans perte de généralité, <math>c=0</math> ou <math>1</math>.
#<math>h(z)=\frac{az+b}{cz+d}</math> avec <math>ad-bc\ne0</math> et sans perte de généralité, <math>c=0</math> ou <math>1</math>.
#*Si <math>c=0</math>, <math>h(z)=\frac{az+b}d</math> (avec <math>ad\ne0</math>) vérifie <math>(*)</math> si et seulement si <math>b=0</math> et <math>|a|=|d|</math>, [[wikt:c.-à-d.|c.-à-d.]] s'il existe <math>\alpha\in\R</math> tel que <math>h(z)=\operatorname e^{\mathrm i\alpha}\varphi_0(z)</math> pour tout <math>z\in\overline\C</math>.
#*Si <math>c=0</math>, <math>h(z)=\frac{az+b}d</math> (avec <math>ad\ne0</math>) vérifie <math>(*)</math> si et seulement si <math>b=0</math> et <math>|a|=|d|</math>, [[wikt:c.-à-d.|c.-à-d.]] s'il existe <math>\alpha\in\R</math> tel que <math>h(z)=\operatorname e^{\mathrm i\alpha}\varphi_0(z)</math> pour tout <math>z\in\overline\C</math>.
#*Si <math>c=1</math>, <math>h(z)=\frac{az+b}{z+d}</math> (avec <math>b\ne ad</math>) vérifie <math>(*)</math> si et seulement si <math>d=\bar ab</math> et <math>|b|=1</math>, c.-à-d. s'il existe <math>\alpha\in\R</math> et <math>e\in\overline\C^*</math> tels que <math>h(z)=\operatorname e^{\mathrm i\alpha}\varphi_e(z)</math> pour tout <math>z\in\overline\C</math>.
#*Si <math>c=1</math>, <math>h(z)=\frac{az+b}{z+d}</math> (avec <math>b\ne ad</math>) vérifie <math>(*)</math> si et seulement si <math>d=\bar ab</math> et <math>|b|=1</math>, c.-à-d. s'il existe <math>\alpha\in\R</math> et <math>e\in\overline\C^*</math> tels que <math>h(z)=\operatorname e^{\mathrm i\alpha}\varphi_e(z)</math> pour tout <math>z\in\overline\C</math>.
#Pour <math>|z|=1</math>, <math>1/\bar z=z</math> et comme <math>|R(z)|=1</math>, on a de même <math>\frac1{\overline R(z)}=R(z)</math>, si bien que <math>S(z)=R(z)</math>. Par conséquent (d'après la question 1.2) <math>R=S</math>.
#
##Immédiat d'après la question précédente.
{{en cours}}
{{en cours}}
}}
}}



{{Bas de page
{{Bas de page

Version du 22 septembre 2021 à 18:58

Fonctions holomorphes
Image logo représentative de la faculté
Exercices no3
Leçon : Fonctions d'une variable complexe

Exercices de niveau 15.

Exo préc. :Trigonométrie complexe
Exo suiv. :Sommaire
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Fonctions holomorphes
Fonctions d'une variable complexe/Exercices/Fonctions holomorphes
 », n'a pu être restituée correctement ci-dessus.




Exercice 3-1

On désigne par , et les trois racines cubiques de et l'on note pour . On pose .

  1. Montrer que est un domaine de tel que si alors et que l'application holomorphe est surjective.
  2. On désignera par la détermination principale du logarithme complexe sur le domaine .
    Calculer la dérivée de la fonction holomorphe .
  3. Écrire le développement en série entière de au voisinage de en précisant son rayon de convergence.

Exercice 3-2

Soit une fonction holomorphe sur le disque avec .

  1. Démontrer les propriétés suivantes :
    1. si  ;
    2. si .
    1. Vérifier que si et , on a la relation suivante :
      .
    2. Démontrer la formule suivante :
      si .
  2. Montrer que cette formule reste valable si est holomorphe sur et continue sur (considérer, pour , la fonction ).
  3. Soit une fonction holomorphe sur et continue sur telle que si . Que peut-on dire de  ?

Exercice 3-3

Soient deux polynômes d'une variable complexe à coefficients complexes, sans zéro commun. On définit la fraction rationnelle en posant

si

sont les pôles de , c.-à-d. les zéros de .

On désignera par le plan complexe compactifié et l'on adoptera la convention d'écriture suivante : et .

    1. Montrer que se prolonge en une application continue de dans , que l'on notera encore . Quelles sont les images des pôles par le prolongement  ?
    2. Rappeler pourquoi deux fractions rationnelles et qui coïncident en tout point d'un ensemble infini de , coïncident partout sur .
      Dans toute la suite, on suppose que est une fraction rationnelle de la variable complexe vérifiant la propriété suivante :
      si .
  1. Pour chaque point , on pose
    .
    On suppose dans cette question que est une homographie qui vérifie . Montrer qu'il existe et tels que pour tout .
  2. On revient au cas général d'une fraction rationnelle vérifiant et l'on définit la fonction suivante :
    désigne le conjugué de . Montrer que est une fraction rationnelle de la variable complexe vérifiant pour . Comparer et sur .
    1. Montrer qu'un élément est un zéro de si et seulement si est un pôle de . Interpréter géométriquement ce résultat.
    2. Montrer que si et , alors il existe tel que s'écrive sous la forme
      sont les zéros de comptés avec leur multiplicité.
  3. Déterminer toutes les fractions rationnelles de la variable qui vérifient la condition .