« Fonctions d'une variable complexe/Exercices/Fonctions holomorphes » : différence entre les versions

Une page de Wikiversité, la communauté pédagogique libre.
Contenu supprimé Contenu ajouté
→‎Exercice 3-2 : fin de sol
→‎Exercice 3-3 : début de sol
Ligne 58 : Ligne 58 :
#
#
##Montrer qu'un élément <math>a\in\C\setminus\{0\}</math> est un zéro de <math>R</math> si et seulement si <math>1/\overline a</math> est un pôle de <math>R</math>. Interpréter géométriquement ce résultat.
##Montrer qu'un élément <math>a\in\C\setminus\{0\}</math> est un zéro de <math>R</math> si et seulement si <math>1/\overline a</math> est un pôle de <math>R</math>. Interpréter géométriquement ce résultat.
##Montrer que si <math>R(0)\ne0</math> et <math>R(0)\ne\infty</math>, alors il existe <math>\alpha\in\R</math> tel que R s'écrive sous la forme
##Montrer que si <math>R(0)\ne0</math> et <math>R(0)\ne\infty</math>, alors il existe <math>\alpha\in\R</math> tel que <math>R</math> s'écrive sous la forme
##:<math>R(z)=\operatorname e^{\mathrm i\alpha}\prod_{k=1}^m\frac{z-a_k}{1-\overline{a_k}z},\quad\forall z\in\overline\C</math>
##:<math>R(z)=\operatorname e^{\mathrm i\alpha}\prod_{k=1}^m\frac{z-a_k}{1-\overline{a_k}z},\quad\forall z\in\overline\C</math>
##:où <math>a_1,\dots,a_m</math> sont les zéros de <math>R</math> comptés avec leur multiplicité.
##:où <math>a_1,\dots,a_m</math> sont les zéros de <math>R</math> comptés avec leur multiplicité.
#Déterminer toutes les fractions rationnelles de la variable <math>z</math> qui vérifient la condition <math>(*)</math>
#Déterminer toutes les fractions rationnelles de la variable <math>z</math> qui vérifient la condition <math>(*)</math>.
{{Solution|contenu=
{{Solution|contenu=
#
##<math>\lim_{b_i}R=\infty</math>.
##Rectifier l'énoncé.
#<math>h(z)=\frac{az+b}{cz+d}</math> avec <math>ad-bc\ne0</math> et sans perte de généralité, <math>c=0</math> ou <math>1</math>.
#*Si <math>c=0</math>, <math>h(z)=\frac{az+b}d</math> (avec <math>ad\ne0</math>) vérifie <math>(*)</math> si et seulement si <math>b=0</math> et <math>|a|=|d|</math>, [[wikt:c.-à-d.|c.-à-d.]] s'il existe <math>\alpha\in\R</math> tel que <math>h(z)=\operatorname e^{\mathrm i\alpha}\varphi_0(z)</math> pour tout <math>z\in\overline\C</math>.
#*Si <math>c=1</math>, <math>h(z)=\frac{az+b}{z+d}</math> (avec <math>b\ne ad</math>) vérifie <math>(*)</math> si et seulement si <math>d=\bar ab</math> et <math>|b|=1</math>, c.-à-d. s'il existe <math>\alpha\in\R</math> et <math>e\in\overline\C^*</math> tels que <math>h(z)=\operatorname e^{\mathrm i\alpha}\varphi_e(z)</math> pour tout <math>z\in\overline\C</math>.
{{en cours}}
}}
}}



{{Bas de page
{{Bas de page

Version du 22 septembre 2021 à 13:48

Fonctions holomorphes
Image logo représentative de la faculté
Exercices no3
Leçon : Fonctions d'une variable complexe

Exercices de niveau 15.

Exo préc. :Trigonométrie complexe
Exo suiv. :Sommaire
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Fonctions holomorphes
Fonctions d'une variable complexe/Exercices/Fonctions holomorphes
 », n'a pu être restituée correctement ci-dessus.




Exercice 3-1

On désigne par , et les trois racines cubiques de et l'on note pour . On pose .

  1. Montrer que est un domaine de tel que si alors et que l'application holomorphe est surjective.
  2. On désignera par la détermination principale du logarithme complexe sur le domaine .
    Calculer la dérivée de la fonction holomorphe .
  3. Écrire le développement en série entière de au voisinage de en précisant son rayon de convergence.

Exercice 3-2

Soit une fonction holomorphe sur le disque avec .

  1. Démontrer les propriétés suivantes :
    1. si  ;
    2. si .
    1. Vérifier que si et , on a la relation suivante :
      .
    2. Démontrer la formule suivante :
      si .
  2. Montrer que cette formule reste valable si est holomorphe sur et continue sur (considérer, pour , la fonction ).
  3. Soit une fonction holomorphe sur et continue sur telle que si . Que peut-on dire de  ?

Exercice 3-3

Soient deux polynômes d'une variable complexe à coefficients complexes, sans zéro commun. On définit la fraction rationnelle en posant

si

sont les pôles de , c.-à-d. les zéros de .

On désignera par le plan complexe compactifié et l'on adoptera la convention d'écriture suivante : et .

    1. Montrer que se prolonge en une application continue de dans , que l'on notera encore . Quelles sont les images des pôles par le prolongement  ?
    2. Rappeler pourquoi deux fonctions et de la variable complexe qui coïncident en tout point d'un ensemble infini de , coïncident partout sur .
      Dans toute la suite, on suppose que est une fraction rationnelle de la variable complexe vérifiant la propriété suivante :
      si .
  1. Pour chaque point , on pose
    .
    On suppose dans cette question que est une homographie qui vérifie . Montrer qu'il existe et tels que pour tout .
  2. On revient au cas général d'une fraction rationnelle vérifiant et l'on définit la fonction suivante :
    désigne le conjugué de . Montrer que est une fraction rationnelle de la variable complexe vérifiant pour . Comparer et sur .
    1. Montrer qu'un élément est un zéro de si et seulement si est un pôle de . Interpréter géométriquement ce résultat.
    2. Montrer que si et , alors il existe tel que s'écrive sous la forme
      sont les zéros de comptés avec leur multiplicité.
  3. Déterminer toutes les fractions rationnelles de la variable qui vérifient la condition .