« Espaces de Banach/Exercices/Espaces de Hilbert » : différence entre les versions

Une page de Wikiversité, la communauté pédagogique libre.
Contenu supprimé Contenu ajouté
→‎Exercice 7-3 : solution, mais il va falloir un exo préliminaire
→‎Exercice 7-3 : Exo préliminaire : prérequis sur les Sobolev
Ligne 32 : Ligne 32 :


==Exercice 7-3==
==Exercice 7-3==
{{Wikipédia|Espace de Sobolev}}
Notons <math>\Omega</math> l'ouvert <math>\left]0,+\infty\right[</math> (donc <math>\overline\Omega=\R_+</math>).
Notons <math>\Omega</math> l'ouvert <math>\left]0,+\infty\right[</math> (donc <math>\overline\Omega=\R_+</math>).
On définit son espace de Sobolev <math>H^1</math> comme étant l'espace de Hilbert
On rappelle que son {{w|espace de Sobolev}} <math>H^1</math> est le complété de l'[[Espace préhilbertien réel|espace préhilbertien]] <math>\mathcal D(\R_+)</math> ([[w:Fonction C∞ à support compact|espace des fonctions C{{exp|∞}} à support compact]]) muni du produit scalaire <math>\langle u,v\rangle=\langle u,v\rangle_2 +\langle u',v'\rangle_2</math>.
:<math>H^1:=\{u\in\mathrm L^2(\Omega)\mid Du\in\mathrm L^2(\Omega)\}</math>
(où <math>Du</math> est la [[Théorie physique des distributions/Dérivation|dérivée de <math>u</math> au sens des distributions]]), muni du produit scalaire
:<math>\langle u,v\rangle:=\langle u,v\rangle_2 +\langle u',v'\rangle_2</math>.

#Montrer que :
#*<math>\forall u\in H^1\quad u\in C_0(\overline\Omega)\quad{\rm et}\quad\|u\|_\infty\le\|u\|_{H^1}</math>
#*<math>\forall u,v\in H^1\quad\int_\Omega(uDv+vDu)=-u(0)v(0)</math> (« formule d'intégration par parties »).
#Montrer que par ailleurs, le sous-espace <math>C_c^\infty(\overline\Omega)=\mathcal D(\R_+)</math> ([[w:Fonction C∞ à support compact|espace des fonctions C{{exp|∞}} à support compact]]) est dense dans <math>H^1</math>.
{{Solution|contenu=
#
#*<math>u</math> est continue sur <math>\overline\Omega</math> — puisque <math>Du\in{\rm L}^1_{\mathrm{loc}}</math> — plus précisément : <math>u</math> est égale presque partout à une fonction continue (à laquelle on l'identifie) ; elle est même <math>\tfrac12</math>-[[Topologie générale/Espace métrique#Continuité uniforme|holdérienne]] puisque (par Cauchy-Schwarz) <math>|u(x)-u(y)|\le\|Du\|_2\sqrt{|x-y|}</math>.<br>De plus, <math>\lim_{+\infty}u=0</math> puisque <math>u^2(x)=u^2(0)+\int_0^x2uDu</math> a une limite en <math>+\infty</math> — car <math>uDu\in{\rm L}^1(\Omega)</math> — et que <math>u^2\in{\rm L}^1(\Omega)</math>.<br>Enfin, <math>\forall x\in\overline\Omega\quad u^2(x)=-\int_x^{+\infty}2uDu\le2\|u\|_2\|Du\|_2\le\|u\|_2^2+\|Du\|_2^2</math> (en utilisant que <math>\lim_{+\infty}u=0</math> et, à nouveau, Cauchy-Schwarz).
#*La formule d'intégration par parties se démontre de même.
#Tout <math>u\in H^1</math> est limite pour <math>\|~\|_{H^1}</math> de fonctions de <math>\mathcal D(\R_+)</math>, par troncature puis régularisation : on se ramène d'abord au cas où <math>u</math> est à support compact en l'approximant dans <math>H^1</math> par <math>u(x)\psi(x/n)</math> avec <math>\psi\in C_c^1(\overline\Omega)</math>, <math>\psi=1</math> au voisinage de 0 et <math>n\to+\infty</math>, puis on la convole par <math>\tfrac1\varepsilon\rho(x/\varepsilon)</math> avec <math>\rho\in C_c^\infty(\R)</math>, positive et d'intégrale 1 et <math>\varepsilon\to0^+</math>. Par conséquent, <math>H^1</math> est le complété, pour <math>\|~\|_{H^1}</math>, de <math>C_c^\infty(\overline\Omega)</math> (et ''a fortiori'' aussi de <math>\{u\in C^\infty(\overline\Omega)\mid u^2+u'^2\in{\rm L}^1(\Omega)\}</math>).
{{Wikipédia|Théorème de Meyers-Serrin}}
}}

==Exercice 7-4==
On reprend les notations de l'exercice précédent, et les résultats de la question 1.
#Montrer qu'il existe un opérateur <math>K</math> sur <math>H^1</math> tel que pour tous <math>u,v\in H^1</math>, <math>\langle Ku, v\rangle=u(0)v(0)</math>.
#Montrer qu'il existe un opérateur <math>K</math> sur <math>H^1</math> tel que pour tous <math>u,v\in H^1</math>, <math>\langle Ku, v\rangle=u(0)v(0)</math>.
#Montrer que <math>K</math> est autoadjoint et de rang 1.
#Montrer que <math>K</math> est autoadjoint et de rang 1.
Ligne 42 : Ligne 61 :
#En utilisant l'{{w|alternative de Fredholm}}, montrer qu'il admet une unique solution <math>u</math> dans <math>H^1</math> si et seulement si <math>\alpha\ne1</math>.
#En utilisant l'{{w|alternative de Fredholm}}, montrer qu'il admet une unique solution <math>u</math> dans <math>H^1</math> si et seulement si <math>\alpha\ne1</math>.
{{Solution|contenu=
{{Solution|contenu=
<!--#Il s'agit de montrer que la forme linéaire <math>u\mapsto u(0)</math> est continue sur <math>H^1</math>. Pour tout <math>u\in\mathcal D(\R_+)</math>, <math>\|u\|_\infty\le\|u\|_{H^1}</math>. En effet, <math>\forall x\in\R_+\quad u^2(x)=-\int_x^{+\infty}2uu'\le2\|u\|_2\|u'\|_2\le\|u\|_2^2+\|u'\|_2^2</math>.
-->
#L'application bilinéaire <math>\varphi:(u,v)\mapsto u(0)v(0)</math> est continue sur <math>H^1\times H^1</math> (de norme <math>\le1</math>) donc (d'après le th. de représentation de Riesz) de la forme <math>\varphi(u,v)=\langle Ku,v\rangle</math> pour un certain opérateur <math>K</math> sur <math>H^1</math> (de même norme que <math>\varphi</math>).
#L'application bilinéaire <math>\varphi:(u,v)\mapsto u(0)v(0)</math> est continue sur <math>H^1\times H^1</math> (de norme <math>\le1</math>) donc (d'après le th. de représentation de Riesz) de la forme <math>\varphi(u,v)=\langle Ku,v\rangle</math> pour un certain opérateur <math>K</math> sur <math>H^1</math> (de même norme que <math>\varphi</math>).
#<math>\varphi</math> est symétrique donc <math>K</math> est autoadjoint.<br><math>Ku=0\Leftrightarrow\forall v\in H^1~u(0)v(0)=0\Leftrightarrow u(0)=0</math> donc <math>K</math> a même noyau que la forme linéaire <math>u\mapsto u(0)</math>, donc <math>\ker K</math> est un hyperplan, c'est-à-dire que <math>K</math> est de rang 1.<br>Une façon plus directe et plus explicite de résoudre ces deux questions est de remarquer qu'en posant <math>u_0(x):={\rm e}^{-x}</math>, on a <math>u_0,u'_0\in H^1</math> et (d'après la formule d'intégration par parties)<br><math>\forall u\in H^1\quad u(0)=-u'_0(0)u(0)=\int_\Omega(uu''_0+u'_0Du)=\int_\Omega(uu_0+u'_0Du)=\langle u_0,u\rangle_{H^1}</math> donc<br><math>\forall u,v\in H^1\quad u(0)v(0)=\langle u_0,u\rangle_{H^1}\langle u_0,v\rangle_{H^1}=\langle Ku,v\rangle_{H^1}\text{ avec }Ku:=\langle u_0,u\rangle_{H^1}u_0</math>.<br>On trouve ainsi immédiatement (on le retrouvera grâce à la question 3 et ce sera utile à la question 4) que la valeur propre non nulle de <math>K</math> est <math>\|u_0\|_{H^1}^2=2\int_{\R^+}{\rm e}^{-2x}{\rm d}x=1</math> (c'est-à-dire que <math>K</math> est la projection orthogonale sur la droite engendrée par <math>u_0</math>).
#<math>\varphi</math> est symétrique donc <math>K</math> est autoadjoint.<br><math>Ku=0\Leftrightarrow\forall v\in H^1~u(0)v(0)=0\Leftrightarrow u(0)=0</math> donc <math>K</math> a même noyau que la forme linéaire <math>u\mapsto u(0)</math>, donc <math>\ker K</math> est un hyperplan, c'est-à-dire que <math>K</math> est de rang 1.<br>Une façon plus directe et plus explicite de résoudre ces deux questions est de remarquer qu'en posant <math>u_0(x):={\rm e}^{-x}</math>, on a <math>u_0,u'_0\in H^1</math> et (d'après la formule d'intégration par parties)<br><math>\forall u\in H^1\quad u(0)=-u'_0(0)u(0)=\int_\Omega(uu''_0+u'_0Du)=\int_\Omega(uu_0+u'_0Du)=\langle u_0,u\rangle_{H^1}</math> donc<br><math>\forall u,v\in H^1\quad u(0)v(0)=\langle u_0,u\rangle_{H^1}\langle u_0,v\rangle_{H^1}=\langle Ku,v\rangle_{H^1}\text{ avec }Ku:=\langle u_0,u\rangle_{H^1}u_0</math>.<br>On trouve ainsi immédiatement (on le retrouvera grâce à la question 3 et ce sera utile à la question 4) que la valeur propre non nulle de <math>K</math> est <math>\|u_0\|_{H^1}^2=2\int_{\R^+}{\rm e}^{-2x}{\rm d}x=1</math> (c'est-à-dire que <math>K</math> est la projection orthogonale sur la droite engendrée par <math>u_0</math>).

Version du 31 octobre 2021 à 08:51

Espaces de Hilbert
Image logo représentative de la faculté
Exercices no7
Leçon : Espaces de Banach

Exercices de niveau 16.

Exo préc. :Théorèmes de Banach-Schauder et du graphe fermé
Exo suiv. :Sommaire
En raison de limitations techniques, la typographie souhaitable du titre, « Exercice : Espaces de Hilbert
Espaces de Banach/Exercices/Espaces de Hilbert
 », n'a pu être restituée correctement ci-dessus.



descriptif indisponible
Wikipedia-logo-v2.svg
Wikipédia possède un article à propos de « Espace de Hilbert ».

Exercice 7-1

Soient un espace de Hilbert et un opérateur normal sur , c.-à-d. .

  1. Montrer que .
  2. En déduire que est inversible si et seulement s'il existe une constante telle que : pour tout .

Exercice 7-2

Soient un espace de Hilbert et un opérateur positif, c.-à-d.[1] : pour tout , .

  1. Montrer, pour tous , et , que . En déduire que .
  2. En considérant , montrer que .
  3. En utilisant le théorème de Lax-Milgram, montrer que est bijectif pour tout .
  1. Ce qu'on appelle d'ordinaire opérateur positif, sur un Hilbert, est un opérateur qui, en plus de vérifier , est autoadjoint. Mais avec cette hypothèse supplémentaire, les questions 1 et 2 de l'exercice n'auraient plus d'intérêt (la question 1 de l'exercice 7-1 suffirait). Sur un Hilbert complexe, cette hypothèse supplémentaire est en fait redondante car un opérateur est autoadjoint si et seulement si . Mais sur , vérifie et n'est pas autoadjoint ni même normal.

Exercice 7-3

descriptif indisponible
Wikipedia-logo-v2.svg
Wikipédia possède un article à propos de « Espace de Sobolev ».

Notons l'ouvert (donc ). On définit son espace de Sobolev comme étant l'espace de Hilbert

(où est la dérivée de au sens des distributions), muni du produit scalaire

.
  1. Montrer que :
    • (« formule d'intégration par parties »).
  2. Montrer que par ailleurs, le sous-espace (espace des fonctions C à support compact) est dense dans .

Exercice 7-4

On reprend les notations de l'exercice précédent, et les résultats de la question 1.

  1. Montrer qu'il existe un opérateur sur tel que pour tous , .
  2. Montrer que est autoadjoint et de rang 1.
  3. Soit . On considère le problème suivant : trouver tel que
    En intégrant contre une fonction test , mettre le problème sous la forme variationnelle suivante :
    .
  4. En utilisant l'alternative de Fredholm, montrer qu'il admet une unique solution dans si et seulement si .